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Abstract
The “Pacemaker of the Ice Ages” paper by Hays, Imbrie, and Shackleton convinced the uniformitarian 

prominent spectral peaks at periods corresponding to dominant cycles within the Milankovitch hypothesis. 
General reasons to question the validity of this iconic paper were presented in Part I of this series. In order 
to fully understand the methodology used by the paper’s authors, it is necessary to discuss some technical 
background material regarding Fourier transforms, the Blackman-Tukey method of spectral analysis, and 
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Introduction

to 
have been elevated to the status of theory by an 
iconic 1976 paper in Science entitled “Variations in 

performed 
spectral analyses on three variables 

 

Globigerina bulloides, the 
relative abundance of the radiolarian species 
Cycladophora davisiana, and (southern 
hemisphere) summer sea surface temperatures (SST), 
also inferred from radiolarian data, revealed spectral 

Fourier Analysis

overview of a number of serious problems with the 

however, it is necessary to also understand the 

120.” 

A continuous function g(t) may be represented as 

A(f):

                                           . 

Some mathematical manipulation results in an 

A(f). 
transform (FT) of g(t):

                                                          .

f), is proportional to the 

2( ) ( ) iftg t A f e df

2( ) ( ) [  ( )]iftA f g t e dt FT g t

(1)

(2)
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                                                                                .

The constant CN is a normalization constant, which 

a larger contribution to the signal g(t
f f

large contributions to the signal.
If one replaces f f

show that
                       .

power density such that

                       .
g(t) is a  

sediment data, one actually only has discrete 

reason, researchers often use discrete versions 

n discrete values of a 
variable g(t) = {g(t0), g(t1), . . . g(tn-1)

                                                                       .

 
t

t is pulled 

in this manner is called a periodogram (Muller and 

a periodogram, one often calculates power values for 
n

The periodogram contains no information about 
the phases of the waves comprising the signal, only 

only half the information content of the original n 

n data points with a string of zeros so 
as to effectively increase the number of data points 

of results (Weedon 2003, 65).
f = 0) 

will be very large compared to the powers at non-

prior to performing a spectral analysis. This can 
be done by subtracting the mean of the data from 
each data point or by performing a linear regression 

usually very slight) and then replacing the data 

MacDonald 2000, 50).

uninitiated (Muller and MacDonald 2000, 51) due 

not discuss them any further. Given the speed with 
which modern computers can perform calculations 
and the relatively small size of the data sets used in 

to perform the calculations.

Normalization of the DFT

                                   .    

I then impose the following normalization 
condition:

                

where CN is a normalization constant. I discuss 
this normalization condition in more detail in the 
following sections.

Weaknesses of the DFT

spaced in time. This is problematic for a number of 

spaced distance intervals, the times assigned to 
these distances will almost never be evenly spaced. 

use of an interpolation process. This introduces 
error, since the spectral analysis is then performed, 
not on the original data, but on interpolations from 
that data. Interpolation tends to enhance the power 

2 2( ) C ( ) ( ) ( ) [ ( )]N N Nf A f A f C A f C FT g t (3)
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estimator of spectral power has a large variance, 
and this variance does not decrease with increasing 

the estimate for the power spectrum that one obtains 

both low variance and to be unbiased (i.e., estimates 
for a given parameter are not systematically too high 
or too low). Unfortunately, these two criteria can be 

decrease the variance of the spectral estimator while 
minimizing bias as much as possible.

Third, the use of data points that are spaced 
evenly in time introduces a problem called aliasing: 

Nyquist 
frequency

The Nyquist Frequency
As a practical matter, one cannot, nor would one 

t
measurements is called the sampling interval, and 
the reciprocal of the sampling interval is called the 
sampling frequency, fs

sampling interval of 0.2 s could be caused by either a 
f

f aliasing.

f is the bare minimum 
f

the wave must be sampled at least twice during 
a wave cycle, such as at the two times per cycle at 

fNyq

                            .
Since the DC component of the signal has been 

interest, fmin, is 1/T, where T is the total length of time 
for which data have been collected. 

other reasons, our calculated power spectrum is at 

As a practical matter, however, aliasing is not much 

because processes that blur the signal (such as 
bioturbation) tend to reduce aliasing effects (Muller 
and MacDonald 2000, 62).

We can now further clarify the proper normalization 

independent of one another, one cannot really infer 

Some analysts emphasize this point by using 
separated vertical lines or dots rather than a smooth 

be achieved by demanding that the simple sum of 
each of the discrete values of P(fi fi) add up to 
the total variance of the original signal:

                                                                              .

n/2 non-negative, 
fmin = 1/T to 

f  = fNyq. 

DFT Demonstration

an amplitude three times greater than that of 

t = 0.05 s. The total variance 

shows the normalized power spectrum for this 

1 1
2 2Nyq sf f

t
(9)

2

1 1
[ ( )] 2 ( ) ( )

Nyq Nyqi i i i

N i N i
i i

g t C f C P f (10)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 1.
data points (with a sampling interval of 0.2 s), then these 

f f
cycles/second (red line).
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that the details in the interesting part of the plot 
may be seen more easily (the rest of the power 

to be exactly nine times greater than the height of 

troughs tend to be too high (see http://azimadli.com/
 for an illustration). 

generally is not concerned with the precise values of 

of great concern. 

Spectral Leakage

with ripples or sidelobes on either side of a true 

signal g(t

function w(t

                                      .

Suppose that the original signal is a pure sinusoid 
f0. To simplify the notation somewhat, 

0 = 2 f0:

                  .
g(t

of length T
we obtained was actually g(t)w(t). Using the form of 

  .

sinc function:

                                . 

 will be

                                        .

Normalization of the above result was achieved 

Papp(
i.e., from 20.0 rads/s to  = +20.0 rads/s, in steps 
of 0.05 rads/s. This integration yielded a value of 

T, or 10.0 s. This result was 

of g(t) over the interval t T/2 to t = +T/2, i.e., the 
g(t

Fig. 2.

(amplitude of 1).
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Papp( ) for 0 = 2.0 rads/s and T = 10.0 s. In the absence 

the power spectrum to consist of a single sharp 

near 0

(Muller and MacDonald 2000, 71). This is especially 

Tapering

is to use a smooth window (or taper) other than 

that smoothly approaches 1 near the center of the 
observed time and 0 at the edges of this timeframe. 

                             .

at t t T/2 and t = T/2 (as well 
t such that |t| > T/2). 

g(t) is again a pure sinusoid of 
0 g(t)

w(t) becomes 

 .

properties of the integral, this reduces to

                                                                             . 

                                                                         .

functions:

                                                                            .

                                                        .

Applying the same normalization procedure used 

0 = 2.0 rads/s has 
been broadened, with an accompanying decrease in 

used in spectral analysis, and these are usually 

to zero near the edges (Muller and MacDonald 2000, 
70). The mathematical forms of a number of well-

the width of the taper is chosen such that it has a 
minimum value, not necessarily at t = T, but for a 
pre-determined time value (lag)  that can be less 
than T
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Fig. 4. The power spectrum of a simple sinusoidal wave 
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t. In other words, 
the lag is given by  = l t, where l is an integer. The 

 = m t, where m 

                                                                  .

called bandwidth (discussed below). 

designed to have minima when l m and 
l = m

of data values collected at times ranging from t = 0 to 
t = T
is given by

                                                .

window will have a value of 1 when l = 0 and 
a minimum value when l = m g(t = 0) is 

effectively reduces g(t = m t
value.

Autocovariance

rates for the two cores which they analyzed (their 

believe that sedimentation rates have been perfectly 
constant for hundreds of thousands of years, so 

recommended it), as it blurs the power spectrum 

real function g(t) (having zero mean) for a given lag 
 to be:

                                                .

g(t)g(t

that the autocovariance is an even function (a fact 

the substitution  and then the substitution 
t t + 
sided form:

                                               .

Derivation of the B-T Method

g(t g(t
density:

                                                                     . 

the fact that the autocovariance function is even 
yields

                                                                 .

which implies that P(f) is

                                              .

n data points gives

                                               .

The subscript S
now a sample autocovariance. Suppose we have a 
set of n data points, and we indicate each data point 

i ranging from 0 to 1. The sample 

l
designate by l = m
in turn determine the number of terms in the sum of 

n

(22)2( ) 0.54 0.46cos( )Hamming
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mw l
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mw l (23)
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designated by i = 0 and the last data point by i

to correspond to m = 5. In order to do our calculation 
for m = 5, we must be able to multiply every g(ti) in 
our sum by a corresponding g(ti
elements to its right, and this must also be true for 

point (corresponding to i 
point will be last in the sum. If we do so, we see that 
this last element corresponds to i = 3.

This implies that for l = m = 5, there will be four 

t. 

value of g(ti)g(ti + l t) for the four g(ti) values in the 
sum, which is consistent with our understanding of 

that we calculate only one autocovariance value, 
that corresponding to l = m = 0. In this case, our 
autocovariance is simply the average of g(ti)2 

correspond to m = l
average can be calculated with only one term, that 
corresponding to i = 0.

Blurring of the Power Spectrum

 = m t, the fewer the 

a small number of terms in the sum implies a poor 
estimate for the average of g(t)g(t + ). This implies 
that our estimator for spectral power will be subject 
to high variance. Increasing the number of terms in 
the sum improves the estimate of the average (and 

small lags.

degree of blurring is good, as drifts in timescale caused 
by small changes in sedimentation rate can cause 

power (Muller and MacDonald 2000, 65). 
The degree of blurring (assuming no windowing) 

depends on the number of terms that appear in the 

T) and (26). If 

only 1/3 the total length of time T is used to calculate 

autocovariance, then continuous lag values may be 
calculated for the remaining 2/3 of the total time. 

implies that the resolution will be about 3/2 = 1.5 
times poorer than would be the case for a simple 

taper decreases resolution still further (Muller and 
MacDonald 2000, 55).

Important Formulae

of the sample autocovariance function:

                                                                       .

give greatest weight to the autocovariance values 
calculated with the smallest number of terms. Such 
an estimator of spectral power would be subject to 

for the sample autocovariance is preferred.

autocovariances for smaller lag values, which are 
calculated with a larger number of terms in the 
sum. This helps improve still further the estimate of 
spectral power.

m

2016), after detrending and interpolation (with 
t

 = l t and multiplying AS( ) by 
a taper to obtain the tapered sample autocovariance 
AST (

f:

                                                                        .

l = 1 rather than l = m  = 0 corresponds 
to l l corresponds to the left-hand side 

t, not the right-hand side. 
If the summation went to l = m, then the sum would 
include a small contribution from the part of the 
sample autocorrelation function that is just a little to 
the right of  = m t, even though we intend to truncate 
the sample autocorrelation at precisely  = m t (see 

( ) 1

0

1( ) ( ) ( )
i n l

S i i
i

A l t g t g t l t
n

(30)
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( ) 4 cos(2 ) ( )

m
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density function for a set of evenly spaced data points. 
Note that the l 

This may be the reason that some authors prefer to 
give only half as much weight to the l = 0 term (i.e., 

                                                                              .

what is the appropriate value of m to use for a 

bandwidth. 

Bandwidth

windows. As noted before, time is a function of lag, 

of the lag value l and are called lag windows w(l). 
We denote as W(f) the spectral window, which is the 

w(l). In order to obtain a good estimate of a spectral 

in the spectrum should be roughly the same size as 
the width of the spectral window W(f

an important feature by one person may not be 

subjective element in the method, and caution must 

determines the width of a spectral window W(f). This 

letter b

resolution, and vice versa. We denote with the letter 
h the width of a rectangular bandpass spectral 
window Wrec(f
it is symmetric about f = 0. Thus, the bandwidth b of 

h. The bandwidth 
non-rectangular 

spectral window is the width of a rectangular window 
that will cause the spectral estimator to have the 
same variance as the estimator calculated with 
the non-rectangular window. Such discussions 
are 

reciprocal 
of the bandwidth b is the integral I of the 

                                                  .

f = 0 and 
l

                                                          .

reference 57):
                           .

(Weedon 2003, 59).
m should be 

restricted to a small fraction of the total number of 

b be on the order of the width 
of the smallest important feature in the power 
spectrum, then a larger value of m may be necessary 

m 
that should be used for the spectral analysis. Since 
the bandwidth should be comparable to the width of 
the smallest important feature in the spectrum, m 
should be large enough to ensure that this will be 
the case, but preferably no larger, since still higher 
values of m will further decrease the stability of our 

1

1
( ) 2 (0) 4 cos(2 ) ( )

m

BT ST ST
l

P f A t f l t A l t t (32)

2 21 ( ) ( )I w l dl W f df
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How Many Frequency Bands?
There is no hard and fast connection between 

f and the 
m

m

f), I am assuming 

reveal more detail in the power spectrum. Thus our 

spectral power is

where CN is a normalization constant.

Background Noise

noise behavior can result from a time series generated 

both evenly and unevenly spaced data sets, it is 

Mudelsee 2002). 

by a decrease of spectral amplitude with increasing 

a very smooth power spectrum. This smoothed power 
spectrum is called the null continuum because the 
null hypothesis is the default assumption that visible 

not statistically distinguishable 

section). Although the smoothed spectra produced by 

(as is often the case with paleoclimatological data 

about the random process generating the null 

simply by setting m to an integer value that is a small 
fraction of the number of data points n. The following 
statement in a set of classroom notes describes this 

Another approach to a null continuum is empirically 
based and does not attempt to assign any particular 
theoretical generating model as a null hypothesis 

smoothed version of the raw periodogram as the null 
hypothesis. . . . The estimation of a null continuum 
by smoothing the periodogram relies on subjective 
judgement [sic] and trial-and-error. In particular 
the null continuum should follow just the smooth 
underlying shape of the distribution of variance 

spectrum. This would clearly be undesirable as the 

from the null continuum.

m 

spectra have been normalized so that the sum of the 

m 
occasionally resulted in slightly negative spectral 

to normalization. A small positive number was 
chosen rather than zero in anticipation of the fact 
that semi-log plots of spectral power would eventually 

2

0
[ (t)] ( ) ,

Nyqf f
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calculated for larger and larger values of m
m 

decrease the bias, but at the cost of increasing instability 
of the power spectrum estimator.
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m + 1, as 

curve obtained by setting m = 0 (the smallest possible 
value of m
line. As m is gradually increased, the bias decreases, 
with the smoothed spectral power estimates near 
f

of m that minimizes or eliminates this oscillatory 
behavior.

with very small value values of m, and increasing those 
values until still higher values of m do not appreciably 

authors, I will use just a single value of m to obtain the 

a value of m = 6 or m = 7 (the two curves are practically 
indistinguishable) seems to give the best estimate 
of the null continuum spectrum: power decreases 

noise behavior, with a value of m
result, although m

C. 
davisiana follow the smooth underlying shape of the 

a value of m = 9 is probably the best choice, but m 

noticeably different from a red noise spectrum, with 
a pronounced hump around f

underlying stochastic processes involved, I see no 

must necessarily have similar shapes. I decided 

compromise a value of m
variables. 

obtained, it becomes possible to perform a test of 

are expecting

whether or not these particular
if they appear in the spectra. In other words, a priori 

statistics are appropriate, rather than a posteriori 

In that case, the probability p
of the  

The lower bound LB and the upper bound UB of the 

                

where Pest(f) is our estimated value of the spectral 

2  is 
the number of degrees of freedom of the smoothed 
spectral estimator, an integer greater than 2. 

not mean that 
there is a probability p that for a particular (already 

power, that the true value of the spectral power lies 

not a random 

the following: if one were to perform many similar 

starting conditions) and to estimate the population 
parameter in each case (i.e., the spectral power at 

spectra to fall within the bounds of the corresponding 
100p percent of those cases.

paleoclimatologists often set  n/m or
2.667n/m

     .

 is given by

where I T is the 
total time interval covered by the data record. In that 
case, the number of degrees of freedom becomes 

                                                           .

1p (37)

2

2

2
,

2
,1

( )

( )
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v
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v

vP f
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v
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have understated the 
number of degrees of freedom for their statistical 
analysis. Ironically, the error 
against them, as a larger number of degrees of 
freedom implies, for a given value of , 

interval may still fall above the null continuum. 

be conservative by using the smaller estimate for . 

calculated value of  is not an integer, one should 
round down to the nearest integer in order to be 

be too stringent, as it seems unreasonable to use a 
value of 

calculated using n
lag m = 60. The appropriate number of degrees of 
freedom is v 2.516(300) / 60 13
set p
value of 
the upper and lower bounds of the spectral power 

either a table or a computer to obtain the 
appropriate 2 values for  = 0.10 and  = 13.

of freedom are generally used in cyclostratigraphic 

In that light, it is interesting to 
note that the 

of freedom is highly 
subjective (Weedon 2003, 69), as 

m is subjective.

considered to be statistically distinguishable from 

above

are simply easier to see when plotted on a semi-log 

graph. Second, the difference between the natural 
log of the upper bound and the natural log of the 

from the estimated value of the power spectrum) with 

with which modern computer software can calculate 
and plot these upper and lower bounds for multiple 

upper and lower bounds on plots of the natural log of 
the power spectra.

assuming that the realized values of the random 

generated by a stationary stochastic (or random) 
process. A process is stationary if the statistical 
properties of the process are independent of absolute 
time. True stationarity (and Gaussianity) have been 
described as “fairy tales invented for the amusement 

depends only upon the lag (separation) between two 

There are rigorous tests which may be performed to 

Prewhitening

the rationale for prewhitening:

many cases it is found that the power has one or 

during computation since the effect of a spectral 

with lower amplitudes. This process of bringing the 
resultant spectrum close to that of white noise is 
called prewhitening.
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is appropriate prior to statistical analysis, per the 

method of prewhitening, and the method used by 

                                  .

The intensity of the prewhitening is controlled 
by the constant C, which can vary between 0 and 
1. If C
a derivative. This has the effect of multiplying
each spectral power P(f) by f2 (see Muller and

this is the case), which enhances the power at

There is no single value for C

different values of C to see which value does the  

MacDonald 2000, 95).
Most scientists do not bother to prewhiten 

timescales and high signal-to-noise ratios are 

above discussion, it would seem to be a necessary 
step when attempting to rigorously evaluate 

an acceptable practice provided that the statistical 
inference is supported by physical reasoning and/
or a need for statistical rigor is not too pressing 
(Wunsch 2010, 69).

Since prewhitening would seem to be a 

is not too problematic, since a completely rigorous 

Replication of Results: RC11-120

entitled bt_original.pro. In doing so, I have followed 

and null continua estimates would occasionally be 
slightly negative. This was especially true of the null 

very small positive value (0.0001) in anticipation of 

of the spectral powers. After truncation, the spectra 

only necessary for eight spectral values in the 
C. davisiana null 

continuum.
I have gone ahead and plotted the null continuua 

order to give the reader a feel for the relative heights 

must be postponed until after the prewhitening 

My (unprewhitened) spectral results for the  

Matuyama magnetic reversal boundary, are shown 

assumed a constant sedimentation rate, one might 
assume that it would not be necessary to interpolate 
the data, since a constant sedimentation rate implies 

t

I interpolated the data, using a time difference 
t

n = 92 data points. The 
n = 91, but it appears 

t

their n = 91 refers to the prewhitened data set, since 
prewhitening reduces the number of elements in 

m
set to m + 1, per the previous discussion. In order 
to obtain the best possible period estimates, I also 

1( ) ( ) ( )i i iy t x t C x t
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m instead of m + 1. Although I have 
reproduced the lower resolution graphs (for ease of 

my period estimates are based upon the higher 
resolution results.

did not elaborate on this, but I presume they meant 
that a particular weighted average involved either 

higher-resolution spectra. In those cases, I obtained a 
weighted mean cycle length using just the handful of 

paper.

As noted earlier, I have also included the null 

intervals to help the reader get a feel for the height 

reason for doing so should hopefully become apparent 

postponed until prewhitening. I have also included 

disagree slightly with the calculated bandwidth, due 
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Fig. 9.
summer sea surface temperature power spectrum. 
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m = 7 was used to obtain the null continua for all 

f), 
rather than P(f

the shapes of my spectra and theirs, as well as 
generally good agreement between the periods of 

received legal permission to reproduce their results 
Science 

permission went unanswered), an internet search 

their results may be compared with mine.
Despite the generally good visual match between 

my results and theirs, in some cases there is 

Fig. 12. 
temperature power spectrum. Numbers in bold indicate 

numbers in parentheses are the periods originally 

curve represents the null continuum, the light green 

bandwidth.
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Fig. 13.
spectrum. Numbers in bold indicate the periods (in 
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and their chart in the upper right-hand corner of 
C. 

davisiana

due to the inherent error of attempting to reconstruct 

Replication of Results: E49-18

t
resulted in n = 122 data points. As before, this was 
one greater than their reported value of n = 121, but 

t
t

I chose m
choice seems to give the best overall null continua 
estimates for all three variables. As in the case of 

There is a generally good visual match between my 
reproduced spectra and those depicted in the second 

C. davisiana power 

Replication of Results: PATCH

a later part of the paper, the authors set m

m
the prewhitened results (discussed in a later paper). 
This discrepancy could be due to slight differences 
between the original and my reconstructed data 
sets. Again, there is generally favorable agreement 
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Summary

method and demonstrated that my code can replicate, 
using the same multi-step procedure described by 

good deal of precision, it is now time to discuss in 

the original results, as well as the effect of the new 

power spectra. We also discuss the effect of including 

References

Journal of Machine 
Learning Research

Mathematical Methods 
for Physicists. 6th ed. Amsterdam, The Netherlands: 

The Measurement of 
Power Spectra from the Point of View of Communications 
Engineering

Spectral Analysis and Filter Theory in 
Applied Geophysics

Cronin, T. M. 2010. Paleoclimates: Understanding Climate 
Change Past and Present

Journal of the 
Atmospheric Sciences

http://www.atmos.washington.edu/~dennis/552_Notes_6b.
pdf.

Science 

Method.” Answers Research Journal

Core MD97-2120: A Case Study.” Creation Research Society 
Quarterly

Answers Research 
Journal

http://
www.stat.purdue.edu/~mhonerla/stat301/Chapter_7.pdf.

http://www.
econ.ohio-state.edu/dejong/note1.pdf.

Icarus

Analysis. Archived as Columbia University class notes 

Spectral Analysis and 
Its Applications

Time Sequence Analysis in Geophysics. 

ären 
” Mathematische Annalen 109 (1): 

Series.” Climatic Change

Philosophy of Science

http://www.ltrr.arizona.

Paleoceanography 

Canon on Insolation and the Ice-Age 
Problem.

Climate Time Series.” Computers and Geosciences

Ice Ages and 
Astronomical Causes: Data, Spectral Analysis and 
Mechanisms

School of Mathematics. 
.

Journal of Creation

Computing

Time Series.” Computers and Geosciences
Schaum’s Outline Series: Mathematical 

Handbook of Formulas and Tables.

Calculus and 
Analytic Geometry
Addison-Wesley.

Data Analysis 
Methods in Physical Oceanography. 3rd ed. Amsterdam, 



147Revisiting an Iconic Argument for Milankovitch Climate Forcing: Should the “Pacemaker of the Ice Ages” Paper Be Retracted? Part 2

Journal of the Geological Society, 
London 

Time-Series Analysis and 
Cyclostratigraphy: Examining Stratigraphic Records 
of Environmental Cycles

Acta 
Mathematica

Classroom Notes. http://isites.harvard.edu/fs/docs/icb.
.



148


