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Abstract

The “Pacemaker of the Ice Ages” paper by Hays, Imbrie, and Shackleton convinced the uniformitarian
scientific community of the validity of the modern version of the Milankovitch hypothesis of Pleistocene
ice ages. Spectral analyses performed on data from two Indian Ocean seafloor sediment cores showed
prominent spectral peaks at periods corresponding to dominant cycles within the Milankovitch hypothesis.
General reasons to question the validity of this iconic paper were presented in Part | of this series. In order
to fully understand the methodology used by the paper’s authors, it is necessary to discuss some technical
background material regarding Fourier transforms, the Blackman-Tukey method of spectral analysis, and
statistical significance. Results from the first part of the Pacemaker paper are then reproduced.
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Introduction

The Milankovitch hypothesis is the dominant
explanation for the 50 or so supposed Pleistocene ice
ages (Walker and Lowe 2007). It was proposed by J. A.
Adhémar in 1842, modified by James Croll in the mid
to late 1800s, and was later quantitatively refined by
Serbian geophysicist Milutin Milankovi¢ (Imbrie 1982;
Milankovi¢ 1941). Summaries of the hypothesis are
provided elsewhere (Hebert 2014, 2015, 2016).

Despite many difficulties (Cronin 2010, 130-139;
Oard 2007), the hypothesis is generally thought to
have been elevated to the status of theory by an
iconic 1976 paper in Science entitled “Variations in
the Earth’s Orbit: Pacemaker of the Ice Ages” (Hays,
Imbrie, and Shackleton 1976, hereafter referred to as
Pacemaker). Hays, Imbrie, and Shackleton performed
spectral analyses on three variables of presumed
climatic significance within the two Indian Ocean
sediment cores RC11-120 and E49-18.  Spectral
analyses of oxygen isotope ratios of the planktonic

foraminiferal species Globigerina bulloides, the
relative abundance of the radiolarian species
Cycladophora davisiana, and (southern

hemisphere) summer sea surface temperatures (SST),
also inferred from radiolarian data, revealed spectral
peaks corresponding to periods of approximately 100,
41, and 23 ka. These periods also correspond to those of
dominant cycles in the earth’s orbital motions. Hence,
the Milankovitch hypothesis is widely seen as having
been confirmed by the Pacemaker paper.

Fourier Analysis

Part I of this series (Hebert 2016) presented an
overview of a number of serious problems with the
Pacemaker paper. To truly understand Pacemaker,
however, it is necessary to also understand the
Blackman-Tukey (B-T) method (Blackman and
Tukey 1958) of spectral analysis. Readers already
familiar with this method may choose to skip ahead
to the section entitled “Replication of Results: RC11-
120.”

Understanding the Blackman-Tukey method in
turn requires a brief discussion of Fourier analysis.

A continuous function g(¢) may be represented as
the sum of an infinite number of waves of varying
frequencies and frequency-dependent (and possibly
complex) amplitudes A(f):

gt = [ A(Fre”""df (1)

Some mathematical manipulation results in an
expression for the frequency-dependent amplitude
A(f). This amplitude is known as the Fourier
transform (F'7) of g(¢):

A(H)= [ ge’ ™ dt = FT[g()] | )

The frequency-dependent spectral power density,
which we denote as I'(f), is proportional to the
modulus squared of the Fourier transform:
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L(f)=Cy A(HAF)=Cy |AH] =C, [FTLa®]. (3)

The constant C, is a normalization constant, which
I discuss in more detail later. For now, the key point is
that waves characterized by larger amplitudes make
a larger contribution to the signal g(¢). If one makes a
plot of I'(f) versus frequency f, pronounced peaks will
occur at the frequencies of the waves making very
large contributions to the signal.
If one replaces f by —f in Egs. (2) and (3), one may
show that
L(=f)=T(f), 4)

One can make use of this fact to define a one-sided
(defined for non-negative frequencies only) spectral
power density such that

P(f)=2r(f) (5)

The above equations assume that g() is a
continuous function, but in analyzing seafloor
sediment data, one actually only has discrete
values of a given variable to analyze. For this
reason, researchers often use discrete versions
of Fourier transforms (DFTs) in order to analyze
paleoclimatological data. For n discrete values of a

variable g(t)=1g(t ), g(t,),...g(t, )} that are equally
spaced in time, the DFT may be written as:

n-1
A(f)=> g, j=0,12,.,n-1, (6)
=0

One may wonder why each term in the sum of Eq. 6
does not contain a At, by analogy with Eq. 2. The
discrete Fourier transform is usually defined in such
a way that the constant time increment At is pulled
out of the summation (Press et al. 2007, 607).

A plot of spectral power versus frequency obtained
in this manner is called a periodogram (Muller and
MacDonald 2000, 55).When using a DFT to calculate
a periodogram, one often calculates power values for
n/2 independent frequencies. This makes sense when
one considers the periodogram’s information content.
The periodogram contains no information about
the phases of the waves comprising the signal, only
their frequencies. Hence, the periodogram contains
only half the information content of the original n
data points (Muller and MacDonald 2000, 49-50).
However, practitioners often pad the end of the
sequence of n data points with a string of zeros so
as to effectively increase the number of data points
and hence the periodogram’s frequency resolution
(Muller and MacDonald 2000, 60—61). However, such
padding complicates assessment of the significance
of results (Weedon 2003, 65).

If the mean of the signal is non-zero, then I'(f=0)
will be very large compared to the powers at non-
zero frequencies and will tend to dominate the power
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spectrum. Hence, the data are usually detrended
prior to performing a spectral analysis. This can
be done by subtracting the mean of the data from
each data point or by performing a linear regression
on the data (any trend in seafloor sediment data is
usually very slight) and then replacing the data
by the residuals from the linear regression (Hays,
Imbrie, and Shackleton 1976, 1125, 1132; Muller and
MacDonald 2000, 50).

A particularly fast, efficient way to perform a DFT
is via a “Fast Fourier Transform,” or FFT. For those
unfamiliar with DFTs and FFTs, detailed discussions
are provided in (Press et al. 2007, 608—639). However,
because FFTs can be somewhat confusing to the
uninitiated (Muller and MacDonald 2000, 51) due
to their use of negative frequencies, this paper will
not discuss them any further. Given the speed with
which modern computers can perform calculations
and the relatively small size of the data sets used in
the Pacemaker paper, little is gained by using a FFT
to perform the calculations.

Normalization of the DFT

As stated earlier, the squared moduli of the
frequency-dependent amplitudes indicate the relative
contribution that a wave of particular frequency is
making to the signal. More precisely, we can define
the variance (square of the standard deviation) of the
finite, real, detrended, discrete data set as

ln—l
o'lg®I=—> g"(t). (7)
i-0
I then impose the following normalization
condition: ,
o’lgt)l= >, CI(f)
illagrgt?uencies,
®
= z 2C, (),

all + frequencies
where C, is a normalization constant. I discuss
this normalization condition in more detail in the
following sections.

Weaknesses of the DFT

A DFT requires all the data points to be evenly
spaced in time. This is problematic for a number of
reasons. First, one rarely encounters evenly spaced
times in analyses of seafloor sediment data. Even
if measurements are made within a core at equally
spaced distance intervals, the times assigned to
these distances will almost never be evenly spaced.
Obtaining evenly spaced times thus requires the
use of an interpolation process. This introduces
error, since the spectral analysis is then performed,
not on the original data, but on interpolations from
that data. Interpolation tends to enhance the power
of low frequency components at the expense of the
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higher frequencies (Schulz and Mudelsee 2002,
421). Unfortunately, most spectral analysis methods
require equally spaced data, including the B-T
method used in Pacemaker.

Second, statisticians would say that the DFT
estimator of spectral power has a large variance,
and this variance does not decrease with increasing
sample size; 1.e., estimates of spectral power are
erratic (Jenkins and Watts 1968, 211-213). Hence,
the estimate for the power spectrum that one obtains
1s not necessarily equal to the true power spectrum.
One wouldlike an estimator of a given quantity tohave
both low variance and to be unbiased (i.e., estimates
for a given parameter are not systematically too high
or too low). Unfortunately, these two criteria can be
difficult to balance. The B-T method is an attempt to
decrease the variance of the spectral estimator while
minimizing bias as much as possible.

Third, the use of data points that are spaced
evenly in time introduces a problem called aliasing:
waves of one frequency may be mistaken for waves
of another frequency. In order to discuss aliasing,
we must introduce a quantity called the Nyquist
frequency, the highest frequency that can appear in a
DFT (Muller and MacDonald 2000, 50).

The Nyquist Frequency

As a practical matter, one cannot, nor would one
wish to, perform calculations using an infinite range
of frequencies. What therefore is the appropriate
upper frequency limit on Eq. (8)? The problem of
aliasing suggests an answer to that question.

The time interval At separating equally spaced
measurements is called the sampling interval, and
the reciprocal of the sampling interval is called the
sampling frequency, f. Fig. 1 (after Blackman and
Tukey’s Fig. 7, 31) illustrates how a set of discrete
data points (open black circles) collected at a constant
sampling interval of 0.2s could be caused by either a
wave of frequency f=1Hzor another wave of frequency
f=4Hz. This phenomenon is called aliasing.

N

0. 1.0 2

0.0

Fig. 1. If the open black circles represent actual sampled
data points (with a sampling interval of 0.2 s), then these
data points could be the result of a wave of frequency
/=1 cycle/second (blue line) or a wave of frequency f=4
cycles/second (red line).

A sampling frequency of 2f is the bare minimum
needed in order to detect a wave of frequency f. Hence

the wave must be sampled at least twice during
a wave cycle, such as at the two times per cycle at
which the wave is at its minimum and maximum
values. We call the highest detectable frequency in
a signal (Jenkins and Watts 1968, 211) the Nyquist
frequency, indicated by the symbol f, . Hence
the sampling frequency will be twice the Nyquist
frequency. Or equivalently, the Nyquist frequency
will be half the sampling frequency:
1 1

w = b =0 ©

Since the DC component of the signal has been
removed by detrending, the smallest frequency of
interest, f . ,is 1/T, where T'is the total length of time
for which data have been collected.

Because of aliasing, frequencies higher than the
Nyquist frequency can make contributions to the
calculated spectral power spectrum. For this and
other reasons, our calculated power spectrum is at
best an approximation to the true power spectrum.
As a practical matter, however, aliasing is not much
of a problem in dealing with seafloor sediment data,
because processes that blur the signal (such as
bioturbation) tend to reduce aliasing effects (Muller
and MacDonald 2000, 62).

We cannow further clarify the proper normalization
of the DFT. Because the spectral power values are
independent of one another, one cannot really infer
anything about power values at frequencies other
than the discrete frequencies of the periodogram.
Some analysts emphasize this point by using
separated vertical lines or dots rather than a smooth
curve to indicate spectral power obtained by a DFT
(Weedon 2003, 68). Since the spectrum is undefined
at other in between frequencies, normalization may
be achieved by demanding that the simple sum of
each of the discrete values of P(f)=2I'(f) add up to
the total variance of the original signal:

I:INyq I:INyq

a’[gt]= D 2C,I(f)= > C.P(f). (10)
i=1 i=1

In Eq. (10), the sums are over n/2 non-negative,

equally spaced frequencies ranging from f . =1/T to

fmax: Nyq*®

DFT Demonstration

Fig. 2 illustrates a signal formed by superposing
two different waves, one of frequency 1Hz and
the other of frequency 4Hz. The 1Hz wave has
an amplitude three times greater than that of
the 4Hz wave. In this case, the time ranged from
0.0 to 10.35s, with At=0.05s. The total variance
of this signal, in arbitrary units, is 5.0225. Fig. 3
shows the normalized power spectrum for this
signal. Although the Nyquist frequency is indeed
10.0Hz, as one would expect from Eq. (9), I have
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y(t) = 3 sin [217 (1Hz) {] + 1 cos[2TT (4 Hz)t]

Signal Value
= N W O

b v 4o

\
A

0o 1 2 3 4 5 6 7 8 9 10 N
Time (seconds)

Fig. 2. Waveform generated by superposing a 1Hz
sine wave (amplitude of 3) with a 4Hz cosine wave
(amplitude of 1).

only plotted spectral power values up to 5.0Hz, so
that the details in the interesting part of the plot
may be seen more easily (the rest of the power
spectrum 1is flat). The spectrum is characterized
by two dominant peaks located very close to the
frequencies of the two waves which comprised the
signal. Because none of the discrete frequencies of
the transform corresponded to exactly 1 or 4Hz,
these peaks are shifted slightly from the expected
frequencies. These small discrepancies result in
resolution bias (the picket fence effect): from Eq.
(8), one might expect the height of the 1Hz peak
to be exactly nine times greater than the height of
the 4Hz peak. However, this is not the case, due
to resolution bias: because the true frequencies of
the two waves lie between the specified frequencies
of the DFT, the peaks tend to be too low and the
troughs tend to be too high (see http://azimadli.com/
vibman/thepicketfenceeffect.htm for an illustration).
However, in analysis of seafloor sediment data, one
generally is not concerned with the precise values of
the spectral powers, so the picket fence effect is not
of great concern.

3.0
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L ]

o
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0 1

2 3
Frequency (Hz)
Fig. 3. Power spectrum generated from the waveform in
Fig. 2 using a discrete Fourier transform.
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Spectral Leakage

However, another phenomenon, called spectral
leakage, can be more problematic in analysis of
seafloor sediment data. Some of the spectral power
expected at a particular frequency can be leaked
to adjacent frequencies. Little spectral leakage is
apparent in Fig. 3, but it is generally more noticeable,
with ripples or sidelobes on either side of a true
spectral peak.

Spectral leakage results from the fact that we are
obtaining the Fourier transform, not of the original
signal g(t) per se, which is infinite in extent, but
the original signal multiplied by a rectangular box
function w(t), defined by

W(t):{l ~T4<t<T,

. (11)
0 otherwise

Suppose that the original signal is a pure sinusoid
of frequency f,. To simplify the notation somewhat,
we express this sinusoid in terms of the angular
frequency w,=2nf,;:

gty=e"", (12)

Because we measured g(¢) only for a finite time
of length T, the function whose Fourier transform
we obtained was actually g(f)w(¢). Using the form of
the Fourier transform expressed in terms of angular
frequency ® (Arfken and Weber 2005, 931), the
Fourier transform of the product becomes

FTIgMw(] = 7= [ gtw(te ™ dt

o % . (13)
_ ﬁ J‘ g ittt — ﬁ J‘ i@ty
% %
Integrating Eq. (13) yields the sinc function:
FTIgOW(t)] = =2 sin((0-o)T) (14)

Hence the (unnormalized) apparent spectral power
at an angular frequency o will be

2 sinz |:(w—a)0 7T :'

2

15
7(w-a,) 49

Normalization of the above result was achieved
by numerically integrating Eq. (15) over a range
of angular frequencies beyond which the value of
Papp(a)) could safely be taken to be essentially zero,
Le., from ©=-20.0rads/s to @=+20.0rads/s, in steps
of 0.05rads/s. This integration yielded a value of
9.968s, which agrees well with the analytical result:
integration of Eq. (15) from negative to positive
infinity yields a result of 7T, or 10.0s. This result was
then equated to the analytically obtained variance
of g(t) over the interval t=-T/2 to t=+T/2, i.e., the
average value of the square of g(f) from —5.0s to
+5.0s. Fig. 4 is a graph of the resulting normalized
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Fig. 4. The power spectrum of a simple sinusoidal wave

of angular frequency w,=2.0rads/s demonstrates the
phenomenon of spectral leakage.

Papp(a)) for @ =2.0rads/s and 7=10.0s. In the absence
of windowing by the block function, one would expect
the power spectrum to consist of a single sharp
spike centered on 2.0rads/s. But because we took
the Fourier transform of a sinusoid of finite extent,
rather than the original sinusoid of infinite extent,
the spectral power was leaked to other frequencies,
with the worst leakage occurring for frequencies
near @, This leakage is characterized by ripples,
or sidelobes, to the left and right of the main peak.
If a second smaller peak is located near this main
peak, the sidelobes surrounding the first peak could
potentially bias power estimates for the smaller peak
(Muller and MacDonald 2000, 71). This is especially
true for high-frequency signals of low amplitude
(Weedon 2003, 63). Hence it is often desirable to
reduce spectral leakage by use of a taper or window.

Spectral Power Density (Arbitrary Units

Tapering

An accepted method for reducing spectral leakage
1s to use a smooth window (or taper) other than
the non-smooth block function, preferably a taper
that smoothly approaches 1 near the center of the
observed time and O at the edges of this timeframe.
As an example, consider a cosine window function
defined by

Wcosine (t) = C0s (%t) (16)

This window is defined such that it is equal to 1
at t=0 and equal to 0 at t=—T/2 and t=T/2 (as well
as equal to O for values of ¢ such that |[¢]|>7/2).
Our original signal g(¢) is again a pure sinusoid of
angular frequency ;. The Fourier transform of g(z)
w(t) becomes

FTLO(OW, 0, (D] = 7= j e cos (£ ) dt

T

=L f e! " cos (£t )dt
-7

. (A7)

Making use of the Euler identity and the symmetry
properties of the integral, this reduces to

%
FTIO(0)W,i0e (D] = 2= j cos((@—a,)t)cos(2)dt. (18)

Eq. (18) may be simplified with the following
trigonometric identity (Spiegel 1994, 17):

cos Acos B =1[cos(A—B)+cos(A+B)].  (19)

Substitution and integration yields an expression
for the Fourier transform that is the sum of two sinc
functions:

FTIG(OW,peine (D] =
1 [sin@-a,-2)T sin(w-a,+2)T| (20)
V2r | (0-@,-%) (0-a,+%)

This can be further simplified to

FTIG(OW,oqie (D] =
1 1

! cos((a)—a))l) - (2
2z v (-0, +7) (0-—0,-F

Applying the same normalization procedure used
earlier yields the power spectrum shown in Fig. 5.
The leakage in Fig. 5 has been reduced, but at the
cost of lower resolution: the peak at ,=2.0rads/s has
been broadened, with an accompanying decrease in
the amplitude of the central peak.
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0.0 0.5 1.0 1.5 20 25 3.0 35 4.0
Angular Frequency (rads/s)
Fig. 5. Application of a cosine taper reduces the leakage
but at the cost of a broadened spectral peak of lower
amplitude.

Spectral Power Density (Arbitrary Units)

There are a number of different tapers frequently
used in spectral analysis, and these are usually
defined to be simple, slowly-varying functions that go
to zero near the edges (Muller and MacDonald 2000,
70). The mathematical forms of a number of well-
known tapers were obtained more by trial and error
than any particular mathematical theory (Blackman
and Tukey 1958, 14). When using the B-T method,
the width of the taper is chosen such that it has a
minimum value, not necessarily at ¢t=7, but for a
pre-determined time value (lag) 7 that can be less
than 7. Since the data points are equally spaced in
time, the lags may be expressed in terms of integer
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multiples of the time increment At. In other words,
the lag is given by 7=IAt, where [ is an integer. The
maximum lag value is given by 7 _=mAt, where m
is the integer value corresponding to the maximum
lag. The Pacemaker authors used what is known as a
Hamming taper (Hays, Imbrie, and Shackleton 1976,

1125; Muller and MacDonald 2000, 70), defined as:
Wit mmming (1) = 0.54 —0.46 cos(32) (22)

However, it is not the kind of taper, but the width of
the taper that is of greatest importance (Jenkins and
Watts 1968, 273). This width influences a quantity
called bandwidth (discussed below).

The above version of the Hamming taper is
designed to have minima when [/ equals 0 or m and
a maximum value when [=m/2. For a B-T analysis
of data values collected at times ranging from =0 to
t=T, the appropriate version of the Hamming taper
is given by

(1)=0.54+0.46cos(%) (23)

VVHamnﬁng

In this version of the Hamming window, the
window will have a value of 1 when /=0 and
a minimum value when [=m. Hence g(t=0) is
unaffected by the Hamming window, but the window
effectively reduces g(t=mAt) to only 8% of its original
value.

Autocovariance

A fair test of the Milankovitch hypothesis should
take into account uncertainty in age estimates. The
Pacemaker authors assumed constant sedimentation
rates for the two cores which they analyzed (their
SIMPLEX age models). After obtaining results
generally consistent with Milankovitch expectations,
they then experimented with more complicated
age models. Of course, even uniformitarians do not
believe that sedimentation rates have been perfectly
constant for hundreds of thousands of years, so
such a test should make allowances for possible
changes in sedimentation rate. The B-T method
is a good choice for paleoclimate work in which the
timescale is uncertain (Tukey himself is said to have
recommended it), as it blurs the power spectrum
(Muller and MacDonald 2000, 16, 63—66). It makes
use of a theorem that states that the Fourier
transform of a function’s autocovariance is equal to
that function’s spectral power density. Blackman
and Tukey (1958, 5) define the autocovariance of a
real function g(¢) (having zero mean) for a given lag
7 to be:

T/2

.1
A@)=lim— [ ghg(t+o)dt,

-T/2

(24)

Eq. (24) is actually the average value (Thomas and
Finney 1988, 341) of g()g(t+1). One may demonstrate
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that the autocovariance is an even function (a fact
that will become important shortly) by first making
the substitution 7——7 and then the substitution
t—t+7. We now express autocovariance in a one-
sided form:
T
A7) = lim - [ 9g(t+zoydt. (25)
T_éu}T_l:0

Derivation of the B-T Method

A consequence of the Wiener-Khintchin theorem
(Blackman and Tukey 1958, 8; Khintchin 1934;
Wiener 1930) is the fact that the Fourier transform of
g(t)’s autocovariance is equal to g(¢)’s spectral power
density:

FT[A(D)]= T e Adr=T(f), (26

Making use of symmetry, the Euler identity, and
the fact that the autocovariance function is even
yields

r(f)= ZT cosr fr)A(r)dr. @27
which implies that P(f) is
P(f):4Tcos(27rfr)A(r)dT. (28)

In actual practice, our data sets will be of finite
length. Expressing Eq. (25) in a discrete form for a
finite number of n data points gives

A (7 =1At) =
i=(n-1)-1 (29)
m Z 9(t) gt +1A DAL,

The subscript S in Eq. (29) indicates that this is
now a sample autocovariance. Suppose we have a
set of n data points, and we indicate each data point
with an index i ranging from O to n—1. The sample
autocovariance will be defined for lags ranging from
{=0 up to some maximum lag of our choosing that we
designate by /=M. The maximum lag we choose will
in turn determine the number of terms in the sum of
Eq. (29). As a simple example, suppose that we have
n=9 data points (Fig. 6), with the first data point

Values of g(t)
that appear in sum of Eq. (29)

i=1 0 1 2 3 4 5 6 7 8

g(t)] 9(0) | 9(1) [ 9(2) | 9(3) | 9(4) | 9(5) | 9(6) [ 9(7) | a(8)

gt+AY fori=3: 1= 0 1 2 3 4 5

Fig. 6. The choice for the maximum lag m will determine
the number of terms in the sum of Eq. (29).
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designated by :=0 and the last data point by :=8.
Let us also suppose that we choose our maximum lag
to correspond to m=5. In order to do our calculation
for m=5, we must be able to multiply every g(¢) in
our sum by a corresponding g(f,+5At) that is five
elements to its right, and this must also be true for
the very last element in our sum. Hence, we must
count backwards from 5 to 0 from our very last data
point (corresponding to i=8) to determine which data
point will be last in the sum. If we do so, we see that
this last element corresponds to i=3.

This implies that for [=m=5, there will be four
terms in the sum, as we would expect from Fig. 6.
Likewise the denominator in the fraction will be 4At.
Hence the right side of Eq. (29) is actually the average
value of g(t)g(t,+1At) for the four g(z) values in the
sum, which is consistent with our understanding of
Eqgs. (24) and (25).

Now consider two extreme cases. Suppose
that we calculate only one autocovariance value,
that corresponding to /=m=0. In this case, our
autocovariance is simply the average of g(¢)*
calculated with nine terms, the maximum possible.

On the other hand, suppose we calculate
autocovariance values for the maximum possible
number of lags (nine). This maximum lag will
correspond to m=[=8. But in order to do this, our
average can be calculated with only one term, that
corresponding to :=0.

Blurring of the Power Spectrum

The previous discussion and Eq. (29) give insight
into why the B-T method is useful. As just noted,
the larger the maximum lag t  _=mAt, the fewer the
number of terms that will appear in the sum. But
a small number of terms in the sum implies a poor
estimate for the average of g(f)g(t+7). This implies
that our estimator for spectral power will be subject
to high variance. Increasing the number of terms in
the sum improves the estimate of the average (and
hence of spectral power). Hence, this is one reason
the B-T method is useful: it is a more stable estimator
of spectral power than a DFT, at least for relatively
small lags.

The B-T method blurs the power spectrum,
resulting in a decrease in resolution. However, some
degree of blurring is good, as drifts in timescale caused
by small changes in sedimentation rate can cause
spurious peaks to appear in the power spectrum. The
B-T method causes these sidelobes to be absorbed
into the real peak, giving a better estimate of spectral
power (Muller and MacDonald 2000, 65).

The degree of blurring (assuming no windowing)
depends on the number of terms that appear in the
sum of Eq. (29). The proof is most easily performed
using Eqgs. (25) (for a finite value of 7T) and (26). If

only 1/3 the total length of time 7'is used to calculate
the integral in the expression for the sample
autocovariance, then continuous lag values may be
calculated for the remaining 2/3 of the total time.
Muller and MacDonald (2000, 64—65) show that this
implies that the resolution will be about 3/2=1.5
times poorer than would be the case for a simple
Fourier transform. However, the use of a smooth

taper decreases resolution still further (Muller and
MacDonald 2000, 55).

Important Formulae
Experts (that is, Jenkins and Watts 1968, 174—
180) recommend using the so-called biased estimator
of the sample autocovariance function:
i=(n-1)-1

AG=1A)=— 3 gt +IAD),

n % 80

Taking the Fourier transform of the unbiased
expression for autocovariance found in Eq. (29) would
give greatest weight to the autocovariance values
calculated with the smallest number of terms. Such
an estimator of spectral power would be subject to
a very high variance (Jenkins and Watts 1968, 179;
Wunsch 2010, 67-68). Hence the biased expression
for the sample autocovariance is preferred.

Furthermore, multiplying Eq. (30) by a taper (such
as the Hamming taper) gives still greater weight to
autocovariances for smaller lag values, which are
calculated with a larger number of terms in the
sum. This helps improve still further the estimate of
spectral power.

Fig. 7 shows sample autocovariance values for
m=40 (untapered, and tapered with a Hamming
window) calculated using my reconstructed 60
values from the RC11-120 sediment core (Hebert
2016), after detrending and interpolation (with
At=3ka).

Remembering that 7=/At and multiplying A(7) by
a taper to obtain the tapered sample autocovariance
Ay, (1), we may express Eq. (28) in a discrete form
to obtain the B-T estimate of spectral power at a
frequency f:

P (f)= 4ECOS(Zﬂf 1A A, (IADAL,

1=0

(31)

One may wonder why the summation goes to
[=m~—1 rather than [=m. Because 7=0 corresponds
to /=0, the index / corresponds to the left-hand side
of each time increment At, not the right-hand side.
If the summation went to [=m, then the sum would
include a small contribution from the part of the
sample autocorrelation function that is just a little to
the right of 7= mAt, even though we intend to truncate
the sample autocorrelation at precisely 7=mAt (see
Jenkins and Watts 1968, 259-260).
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Fig. 7. Untapered and tapered (using a Hamming
window) sample autocovariance values calculated for
reconstructed 60 values in the RC11-120 sediment
core, with m =40 (the same value used in the Pacemaker
paper).

Eqgs. (30) and (31) allow us to calculate the spectral
density function for a set of evenly spaced data points.
Note that the /=0 term makes a large non-zero
contribution to the sum, which causes all frequencies
to exhibit significant noticeable background power,
which is not the result one obtains from using a DFT.
This may be the reason that some authors prefer to
give only half as much weight to the /=0 term (i.e.,
see Jenkins and Watts 1968, 259):

P (f)=2A (0)At+ 4E cos(27  -IAD A, (IADAL (32)
=1

Now that we have explained the fundamentals
of the B-T' method, we need to answer the question,
what is the appropriate value of m to use for a
particular analysis? In order to answer that question,
we must briefly discuss a quantity called bandwidth.

Bandwidth

Our discussion of tapers or windows so far has
only involved time domain expressions for these
windows. As noted before, time is a function of lag,
so these windows are sometimes expressed in terms
of the lag value [ and are called lag windows w()).
We denote as W(f) the spectral window, which is the
Fourier transform (Jenkins and Watts 1968, 245) of
w(l). In order to obtain a good estimate of a spectral
peak, the width of the narrowest important feature
in the spectrum should be roughly the same size as
the width of the spectral window W(f) (Jenkins and
Watts 1968, 256, 279). Of course, what is considered
an important feature by one person may not be
considered important by another. Hence, there is a
subjective element in the method, and caution must
be exercised when using it (Jenkins and Watts 1968,
281-282; Weedon 2003, 85).

This in turn raises the question of how one
determines the width of a spectral window WAf). This
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width is defined by a quantity called bandwidth or
equivalent bandwidth. Bandwidth, denoted by the
letter b, is a measure of the frequency resolution of
the spectral density estimate (Buttkus 2000, 192).
A smaller bandwidth means greater frequency
resolution, and vice versa. We denote with the letter
h the width of a rectangular bandpass spectral
window W_(f) which is defined in such a way that
it is symmetric about f=0. Thus, the bandwidth b of
this rectangular window is equal to 4. The bandwidth
(or equivalent bandwidth) for a non-rectangular
spectral window 1s the width of a rectangular window
that will cause the spectral estimator to have the
same variance as the estimator calculated with
the non-rectangular window. Such discussions
are found in many textbooks (Buttkus 2000, 196—
197; Jenkins and Watts 1968, 255-257). Following
this derivation, one may show that the reciprocal
of the bandwidth b is the integral I of the square of
the window function over all possible lag or
frequency values:
1 T 2 T 2
= _LW (hHdl _wa (f)df. (33)
The last equality in Eq. (33) is Parseval’s theorem.
Because the windows are symmetric about /=0 and
[=0, the Hamming window may be expressed as

0.54+0.46c08(2) —m<l<m

RG]
0 otherwise

WHamming (I) = {

One can use Eqgs. (33) and (34) to verify that the
bandwidth of the Hamming taper is given by (see
Hays, Imbrie, and Shackleton 1976, 1132, their
reference 57):

o 1258
Hlamming = At

The uncertainty in the frequency of a peak may
be taken to be plus or minus half the bandwidth
(Weedon 2003, 59).

Blackman and Tukey argued that m should be
restricted to a small fraction of the total number of
data points (Blackman and Tukey 1958, 11), as do
many other experts. However, if one takes seriously
the requirement that b be on the order of the width
of the smallest important feature in the power
spectrum, then a larger value of m may be necessary
in order to meet this requirement. Hence Eq. (35)
gives us an indication of the approximate value of m
that should be used for the spectral analysis. Since
the bandwidth should be comparable to the width of
the smallest important feature in the spectrum, m
should be large enough to ensure that this will be
the case, but preferably no larger, since still higher
values of m will further decrease the stability of our
B-T spectral density estimator.

(35)
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How Many Frequency Bands?

There is no hard and fast connection between
the number of frequency bands of width Af and the
maximum number of lags m (Jenkins and Watts
1968, 260). The Pacemaker authors set the number
of frequency bands to m+1 (Hays, Imbrie, and
Shackleton 1976, 1132, their reference 57). Although
one normally associates a frequency band with a
range of frequencies (i.e., a value of Af),  am assuming
that by bands the Pacemaker authors actually meant
the number of discrete frequency values used in their
calculations. However, this is a small detail which
will not greatly affect the final results. Jenkins and
Watts (1968, 260) recommend using a frequency
spacing that is 2—3 times smaller than this in order to
reveal more detail in the power spectrum. Thus our
final normalization condition for the B-T estimate of
spectral power is

f=fuyg

a’[gM]= >, Cy Py ()AF, (36)

where C,; is a normalization constant.

Background Noise

Before one can discuss the possible statistical
significance of results obtained in a spectrum
analysis, one has to first determine the level of
background noise. Seafloor sediment spectra are
often characterized by red noise (Gilman, Fuglister,
and Mitchell 1963). A power spectrum exhibiting red
noise behavior can result from a time series generated
by a discrete AR-1, or first-order autoregressive
random process (Schulz and Mudelsee 2002). For
both evenly and unevenly spaced data sets, it is
possible to fit red noise models to the data (Mann and
Lees 1996; Meyers 2012; Mudelsee 2002; Schulz and
Mudelsee 2002).

A power spectrum exhibiting red noise is marked
by a decrease of spectral amplitude with increasing
frequency, with the rate of decrease greatest for
lower frequencies. This is in contrast to a spectrum
of approximately constant spectral amplitude as a
function of frequency (white noise).

The Pacemaker authors obtained their estimate of
spectral power of the background noise by producing
a very smooth power spectrum. This smoothed power
spectrum 1s called the null continuum because the
null hypothesis is the default assumption that visible
spectral peaks are not statistically distinguishable
from the background spectral power. Only if the peaks
are sufficiently pronounced is the null hypothesis
disproven (we discuss this in more detail in the next
section). Although the smoothed spectra produced by
this method will often exhibit red noise characteristics
(as is often the case with paleoclimatological data
sets), this method makes no explicit assumptions

about the random process generating the null
continuum. The smooth background is obtained
simply by setting m to an integer value that is a small
fraction of the number of data points n. The following
statement in a set of classroom notes describes this
technique (Meko 2015, 9):

Another approach to a null continuum is empirically
based and does not attempt to assign any particular
theoretical generating model as a null hypothesis
(Bloomfield 2000). This approach uses a greatly
smoothed version of the raw periodogram as the null
hypothesis....The estimation of a null continuum
by smoothing the periodogram relies on subjective
judgement [sic] and trial-and-error. In particular
the null continuum should follow just the smooth
underlying shape of the distribution of variance
over frequency. If smoothed insufficiently, the null
continuum will bulge at the important peaks in the
spectrum. This would clearly be undesirable as the
test of significance of the peak is that it is different
from the null continuum.

This process 1s demonstrated in Fig. 8, as power
spectra for the detrended and interpolated RC11-
120 60 values are calculated for values of m
equal to 0, 2, 4, 6, 8, and 9. To be consistent with
the methodology used in the Pacemaker paper, for
all six estimates of the null continuum, the power
spectra have been normalized so that the sum of the
variances at all frequencies equals unity, or 100%.
The higher frequency ripples for some values of m
occasionally resulted in slightly negative spectral
powers at high frequencies: these negative spectral
powers were truncated and set equal to 0.0001 prior
to normalization. A small positive number was
chosen rather than zero in anticipation of the fact
that semi-log plots of spectral power would eventually
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Fig. 8. Process used to determine the null continua
for the Blackman-Tukey method. Power spectra are
calculated for larger and larger values of m for oxygen
isotope values in the RC11-120 core. Higher values of m
decrease the bias, but at the cost of increasing instability
of the power spectrum estimator.
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be needed. The number of frequencies was m+1, as
in the Pacemaker paper. Note that the background
curve obtained by setting m=0 (the smallest possible
value of m) is extremely stable but very biased—a flat
line. As m is gradually increased, the bias decreases,
with the smoothed spectral power estimates near
/=0 Dbecoming much more consistent (~10-12%).
As noted earlier, some of the null continua exhibit
oscillatory behavior at higher frequencies. One would
presumably not expect a background spectrum to
do this, so ideally one would like to choose a value
of m that minimizes or eliminates this oscillatory
behavior.

Jenkins and Watts (1968, 263—272) recommended
that one obtain the background spectrum by starting
with very small value values of m, and increasing those
values until still higher values of m do not appreciably
decrease the bias. Following the lead of the Pacemaker
authors, I will use just a single value of m to obtain the
null continua for all three variables. In the 60 case,
a value of m=6 or m="7 (the two curves are practically
indistinguishable) seems to give the best estimate
of the null continuum spectrum: power decreases
continuously with increasing frequency, with a greater
rate of decrease at low frequencies, and the oscillatory
behavior at higher frequencies has been significantly
damped. Hence, the null continuum exhibits behavior
that roughly approximates that of red noise, as one
might expect from a seafloor sediment data set. The
SST null continuum also exhibited approximate red
noise behavior, with a value of m=4 yielding the best
result, although m values of 5-7 were also acceptable.
If one attempts to make the null continuum for % C.
davisiana follow the smooth underlying shape of the
power spectrum, as suggested by Meko (2015), then
a value of m=9 is probably the best choice, but m
values of 6, 7, and 8 also yielded similarly shaped null
continua. However, such a null continuum would be
noticeably different from a red noise spectrum, with
a pronounced hump around f=0.025cycles’ka. But
since we are not making any assumptions about the
underlying stochastic processes involved, I see no
reason to assume that all three background curves
must necessarily have similar shapes. I decided
to follow Meko's methodology and selected as a
compromise a value of m=7 for these three RC11-120
variables.

Tests of Statistical Significance

Once a low-resolution null continuum has been
obtained, it becomes possible to perform a test of
statistical significance. Because paleoclimatologists
are expecting peaks at frequencies corresponding
to periods of 100, 41, and 23ka, we need to test
whether or not these particular peaks are significant
if they appear in the spectra. In other words, a priori

J. Hebert

statistics are appropriate, rather than a posteriori
(Hartmann 2013, 168-169).

In that case, the probability p expressed in terms
of the level of significance o

p=l-« 37

may be used to determine a confidence interval.
The lower bound LB and the upper bound UB of the
confidence interval are given by (Jenkins and Watts
1968, 254)

UB — VPeZstz( f )
(38)
LB — VPest ( f )
Xors

where P_(f) is our estimated value of the spectral
density function obtained from the B-T method, and
22 1s the chi-squared distribution. In Eq. (38), v is
the number of degrees of freedom of the smoothed
spectral estimator, an integer greater than 2.

Note that the confidence interval does not mean that
there is a probability p that for a particular (already
calculated) frequency-dependent estimate of spectral
power, that the true value of the spectral power lies
within the bounds of the corresponding confidence
interval. Because the true value of the spectral
density is an unknown constant and not a random
value, it does not make sense to speak of a probability
that it lies between two fixed values. Although this
is a common misconception (Mayo 1981, 272), the
correct understanding of the confidence interval is
the following: if one were to perform many similar
statistical experiments (with apparently identical
starting conditions) and to estimate the population
parameter in each case (i.e., the spectral power at
a given frequency) along with the corresponding
confidence intervals (which can vary from sample to
sample), one would expect the true values of the power
spectra to fall within the bounds of the corresponding
confidence intervals in 100p percent of those cases.

For seafloor sediment spectral analysis,
paleoclimatologists often set v equal to 2n/m or
2.667n/m (Imbrie and Pisias n.d., 12). The Pacemaker
authors chose the first option (Hays, Imbrie, and

Shackleton 1976, 1132, ref. 57) so that
o2
m
However, according to (Jenkins and Watts 1968,
254), v 1s given by

(39)

i
I
where I is the same quantity in Eq. (33), and 7'is the
total time interval covered by the data record. In that
case, the number of degrees of freedom becomes

v=2(nAtb = (2naty L8 _ 23160
mAt

v (40)

(41)
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This result is confirmed for the Hamming window
elsewhere (Thomson and Emery 2014, 479). Thus, if
one strictly follows the methodology presented in
texts on spectral analysis, it seems that the
Pacemaker authors may have understated the
number of degrees of freedom for their statistical
analysis. Ironically, the error would have worked
against them, as a larger number of degrees of
freedom implies, for a given value of o, a narrower
confidence interval. This in turn implies that even
spectral peaks of moderate height may still be
significant, as the lower bound of the confidence
interval may still fall above the null continuum.
Perhaps the Pacemaker authors were attempting to
be conservative by using the smaller estimate for v.

Some argue that in the likely case that the
calculated value of v is not an integer, one should
round down to the nearest integer in order to be
conservative (Honerlaw n.d., 3). However, this may
be too stringent, as it seems unreasonable to use a
value of v=4 if, for example, the calculated value for
v 1s actually 4.9.

For example, suppose one wanted to calculate
the 90% confidence interval for a power spectrum
calculated using n =300 data points and a maximum
lag m = 60. The appropriate number of degrees of
freedom is v =2.516(300)/ 60 ~ 13. One would then
set p equal to 0.90 and solve for the appropriate
value of a (in this case, 0.10). For a given frequency,
the upper and lower bounds of the spectral power
estimate would then be given by Eqs. (38) after
using either a table or a computer to obtain the
appropriate %2 values for a = 0.10 and v = 13.

Weedon (2003, 69, 71) notes that 8-14 degrees
of freedom are generally used in cyclostratigraphic
studies, with 8 normally considered a bare
minimum. In that light, it 1s interesting to
note that the Pacemaker authors used only 6-7
degrees of freedom in their analysis based on Eq. (39)
and the information from their Table 4. Of course,
the number of degrees of freedom is highly
subjective (Weedon 2003, 69), as one would expect
from the fact that the choice of m is subjective.

Weedon (2003, 82) presents us with the criterion
for determining whether or not a spectral peak
is significant: “If the range of uncertainty of a
particular spectral peak value does not overlap
with the continuum spectrum, that peak can be
considered to be statistically distinguishable from
the background.” In other words, if the lower bound
of the confidence interval for a spectral peak lies
above the continuum spectrum, then the peak is
statistically distinguishable from the background.

When evaluating statistical significance, it is
expedient to plot the power spectrum on a semi-log
graph for two reasons. First, smaller spectral peaks
are simply easier to see when plotted on a semi-log

graph. Second, the difference between the natural
log of the upper bound and the natural log of the
lower bound will be equal to a constant, regardless of
frequency (Jenkins and Watts 1968, 255). Hence one
can indicate for any frequency the depth of the lower
bound of a confidence interval (measured downward
from the estimated value of the power spectrum) with
an arrow of fixed length. However, given the ease
with which modern computer software can calculate
and plot these upper and lower bounds for multiple
frequency values, one could just as easily overlay the
upper and lower bounds on plots of the natural log of
the power spectra.

We are making a number of implicit assumptions
In assessing statistical significance. First, we are
assuming that the realized values of the random
variables (the 60 and SST wvalues, etc) are
generated by a stationary stochastic (or random)
process. A process is stationary if the statistical
properties of the process are independent of absolute
time. True stationarity (and Gaussianity) have been
described as “fairy tales invented for the amusement
of undergraduates” (Thomson 1994, cited in Anava
et al. 2013, 1). Hence, paleoclimatologists often settle
for weak stationarity or second-order stationarity:
the process is described by a finite, time-independent
mean, a finite variance, and an autocovariance which
depends only upon the lag (separation) between two
time values, not the absolute time (Hu 2006, 3).
There are rigorous tests which may be performed to
ensure weak stationarity, but in actual practice many
analysts do not bother to use them (Nason 2014)!

Prewhitening

Often the data are prewhitened prior to evaluating
statistical significance. Prewhitening makes the
spectral density more constant, like that of a white
noise background. Kanasewich (1985, 126) explains
the rationale for prewhitening:

Power spectral estimates are most precise when the
power is distributed evenly over all frequencies. In
many cases it is found that the power has one or
more broad peaks. The average value of the power at
any particular frequency, f, may be greatly distorted
during computation since the effect of a spectral
window is to spread the power from the large peaks
into adjacent frequencies. To avoid this difficulty
the data is [sic] passed through a filter which
compensates or pre-emphasizes the frequencies
with lower amplitudes. This process of bringing the
resultant spectrum close to that of white noise is
called prewhitening.

Such flattening of the spectrum need not be
precise; it is only necessary to ensure that the rate
of change of the power spectrum with frequency is
relatively small (Blackman and Tukey 1958, 29).
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Since a white noise background process is
weakly stationary (Hu 2006, 3—4) prewhitening
is appropriate prior to statistical analysis, per the
discussion in the previous section. One common
method of prewhitening, and the method used by
the Pacemaker authors, is a first difference filter:

y(t) =X()~C X(t,,) (42)

The intensity of the prewhitening is controlled
by the constant C, which can vary between 0 and
1. If C=1, the effect is very similar to that of taking
a derivative. This has the effect of multiplying
each spectral power P(f) by f* (see Muller and
MacDonald [2000, 94-95] for a discussion of why
this is the case), which enhances the power at
higher frequencies (at the cost of spectral power at
lower frequencies).

There is no single value for C that will work in
every situation; one just has to experiment with
different values of C to see which value does the
best job of flattening the spectrum (Muller and
MacDonald 2000, 95).

Most scientists do not bother to prewhiten
seafloor sediment data. Even the Pacemaker
paper refers to this step as optional (Hays, Imbrie,
and Shackleton 1976, 1125), as uncertainties in
timescales and high signal-to-noise ratios are
thought to make this step unnecessary (Muller and
MacDonald 2000, 95). However, based upon the
above discussion, it would seem to be a necessary
step when attempting to rigorously evaluate
statistical significance, unless one has already
verified the assumption of weak stationarity for
the original data set. However, analysts often plot
confidence intervals (without prewhitening) even
for spectra which exhibit red noise characteristics,
an acceptable practice provided that the statistical
inference is supported by physical reasoning and/
or a need for statistical rigor is not too pressing
(Wunsch 2010, 69).

Since prewhitening would seem to be a
requirement for a rigorous test of statistical
significance, and because the prewhitening process
diminishes the heights of low-frequency peaks
relative to the higher frequency peaks, does this
mean that a rigorous test of significance of the low-
frequency peaks cannot be performed using the
Blackman-Tukey method? Perhaps not, but this
1s not too problematic, since a completely rigorous
test of significance is not absolutely necessary if
one is already expecting a particular prominent
low-frequency peak (Wunsch 2010, 69). Of course,
this 1s indeed the case here, as Milankovitch theory
predicts the existence of a low-frequency peak at
about 0.01cycles/ka (corresponding to a period of
100ka).
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Replication of Results: RC11-120

Now that I have explained the theory behind the
B-T method, I here reproduce the results from Fig.
5 and Tables 3 and 4 of the Pacemaker paper using
an IDL (Interactive Data Language) code that I
entitled bt_original.pro. In doing so, I have followed
the procedure described on p.1125 of the Pacemaker
paper. Some of the high-frequency spectral power
and null continua estimates would occasionally be
slightly negative. This was especially true of the null
continua, which sometimes exhibited high-frequency
oscillatory behavior. The Pacemaker authors did not
explicitly describe how they handled this difficulty.
I truncated those values, setting them equal to a
very small positive value (0.0001) in anticipation of
the fact that I will eventually take the natural log
of the spectral powers. After truncation, the spectra
were normalized and expressed as a percentage of
the total variance per unit frequency band. However,
for the RC11-120 power spectra, truncation was
only necessary for eight spectral values in the
high-frequency portion of the % C. davisiana null
continuum.

I have gone ahead and plotted the null continuua
and lower bounds of the 80% confidence intervals in
order to give the reader a feel for the relative heights
of the peaks relative to the background. However,
I recognize that a truly rigorous test of significance
must be postponed until after the prewhitening
process (in Part III of this series).

My (unprewhitened) spectral results for the
RC11-120 core, using their SIMPLEX timescale
and an assumed age of 700ka for the Brunhes-
Matuyama magnetic reversal boundary, are shown
in Figs. 9-11. Given that the SIMPLEX age model
assumed a constant sedimentation rate, one might
assume that it would not be necessary to interpolate
the data, since a constant sedimentation rate implies
a constant time increment between equidistant
data points. However, there is still some round-off
error, even with high-precision computing. Hence,
it is still necessary to set At to an exact value
and to interpolate. As described in Pacemaker,
I interpolated the data, using a time difference
At=3ka. This resulted in a Nyquist frequency
of 0.167cycles’lka and n=92 data points. The
Pacemaker authors reported n=91, but it appears
that they excluded the time =0ka from their count,
as my timescale extends from 0 to 273ka, as theirs
did (see their Table 3 and caption). Either that, or
their n=91 refers to the prewhitened data set, since
prewhitening reduces the number of elements in
the time series by 1. I used a maximum lag value of
m=40, as they did. The number of frequencies was
set to m+1, per the previous discussion. In order
to obtain the best possible period estimates, I also
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reran my code, setting the number of frequencies
equal to 3m instead of m+1. Although I have
reproduced the lower resolution graphs (for ease of
comparison with the original Pacemaker results),
my period estimates are based upon the higher
resolution results.

Also, for all these results (Figs. 9-17), I have
labelled the periods (in ka) corresponding to the
frequencies of dominant peaks, with the original
periods reported by the Pacemaker authors in
parentheses next to my reported values. The
Pacemaker estimates for the dominant periods were
“weighted mean cycle lengths” (Hays, Imbrie, and
Shackleton 1976, 1126). The Pacemaker authors
did not elaborate on this, but I presume they meant
that a particular weighted average involved either
all frequencies that fell within the estimated full
width at half maximum for a particular peak, or
that it involved just the handful of frequencies in
the vicinity of the very top of the peak.
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Fig. 9. Unprewhitened RC11-120 (southern hemisphere)
summer sea surface temperature power spectrum.
Numbers in bold indicate the periods (in ka) of prominent
spectral peaks, and numbers in parentheses are the
periods originally reported in the Pacemaker paper.
The smooth red curve represents the null continuum,
the light green line represents the lower bound of the
80% confidence interval, and the blue bracket indicates
the approximate bandwidth.

In most cases, my high-resolution peaks exhibited
smooth, rounded tops, making it quite easy to
estimate the central frequency of the peak. In some
cases, however, slanted peaks (such as the A and
B peaks in Fig. 9) were still present, even in the
higher-resolution spectra. In those cases, I obtained a
weighted mean cycle length using just the handful of
frequencies in the immediate vicinity of the very top
of the peak. Despite this ambiguity in methodology,
my peak period values generally agreed very well
with those originally reported in the Pacemaker

paper.
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Fig. 10. Unprewhitened RC11-120 oxygen isotope
power spectrum. Numbers in bold indicate the periods
(in ka) of prominent spectral peaks, and numbers in
parentheses are the periods originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light green line represents the
lower bound of the 80% confidence interval, and the blue
bracket indicates the approximate bandwidth.

As noted earlier, I have also included the null
continua and the lower bounds of the 80% confidence
intervals to help the reader get a feel for the height
of spectral peaks compared to the backgrounds. The
reason for doing so should hopefully become apparent
in Part III of this series, although I recognize that a
rigorous analysis of statistical significance must be
postponed until prewhitening. I have also included
a light blue bracket to indicate the approximate
equivalent bandwidth (width of the bracket may
disagree slightly with the calculated bandwidth, due
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Fig. 11. Unprewhitened RC11-120 %. C. davisiana
power spectrum. Numbers in bold indicate the periods
(in ka) of prominent spectral peaks, and numbers in
parentheses are the periods originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light green line represents the
lower bound of the 80% confidence interval, and the blue
bracket indicates the approximate bandwidth.
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Fig. 12. Unprewhitened E49-18 summer sea surface
temperature power spectrum. Numbers in bold indicate
the periods (in ka) of prominent spectral peaks, and
numbers in parentheses are the periods originally
reported in the Pacemaker paper. The smooth red
curve represents the null continuum, the light green
line represents the lower bound of the 80% confidence
interval, and the blue bracket indicates the approximate
bandwidth.

to resolution limitations), after Eq. (35). A value of
m=7 was used to obtain the null continua for all
three variables in the RC11-120 core. Note that their
percentage variance values are about half of mine;
the Pacemaker authors apparently plotted I'(f),
rather than P(f), in their Fig. 5.

Overall, there is good agreement between
the shapes of my spectra and theirs, as well as
generally good agreement between the periods of
my dominant peaks and theirs. Although I have not
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Fig. 13. Unprewhitened E49-18 oxygen isotope power
spectrum. Numbers in bold indicate the periods (in
ka) of prominent spectral peaks, and numbers in
parentheses are the periods originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light green line represents the
lower bound of the 80% confidence interval, and the blue
bracket indicates the approximate bandwidth.
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Fig. 14. Unprewhitened E49-18 % C. davisiana power
spectrum. Number in bold indicates the period (in ka)
of the prominent spectral peak, and the number in
parentheses is the period originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light green line represents the
lower bound of the 80% confidence interval, and the blue
bracket indicates the approximate bandwidth.

received legal permission to reproduce their results
in this paper (reproduction of figures from Science
papers published between 1974 and 1994 require
the author’s permission, and my request for this
permission went unanswered), an internet search
should quickly locate a picture of their Fig. 5, so that
their results may be compared with mine.

Despite the generally good visual match between
my results and theirs, in some cases there is
noticeable disagreement. For instance, there are
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Fig. 15. Unprewhitened PATCH summer sea surface
temperature power spectrum. Numbers in bold indicate
the periods (in ka) of prominent spectral peaks, and
numbers in parentheses are the periods originally
reported in the Pacemaker paper. The smooth red
curve represents the null continuum, the light blue
line represents the lower bound of the 90% confidence
interval, and the blue bracket indicates the approximate
bandwidth.
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Fig. 16. Unprewhitened PATCH oxygen isotope power
spectrum. Numbers in bold indicate the periods (in
ka) of prominent spectral peaks, and numbers in
parentheses are the periods originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light blue line represents the
lower bound of the 90% confidence interval, and the
blue bracket indicates the approximate bandwidth. The
“D” peak is not labelled in Fig. 5 of Pacemaker, but it is
listed in that paper’s Table 4.

some noticeable differences between my Fig. 11
and their chart in the upper right-hand corner of
their Fig. 5 (the RC11-120 spectrum results for % C.
davisiana). The trough between peaks A and B in
my Fig. 11 is not as deep as it was in Pacemaker.
Likewise, they did not report a period value for my
peak C, since their graph exhibits more of a plateau
than a peak at that location. There were also some
differences between my reported peak periods and
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Fig. 17. Unprewhitened PATCH % C. davisiana power
spectrum. Numbers in bold indicate the periods (in
ka) of prominent spectral peaks, and numbers in
parentheses are the periods originally reported in the
Pacemaker paper. The smooth red curve represents
the null continuum, the light blue line represents the
lower bound of the 90% confidence interval, and the blue
bracket indicates the approximate bandwidth.

theirs. My period of 119ka for peak A in Fig. 11 is
noticeably larger than their reported value of 106ka.
However, my period of 102ka for peak A in Fig. 9 is
actually a better match to the expected 100ka value
than the originally reported value of 87ka. The same
is true for my peak A in Fig. 10.

Also, my peaks tend to not be as sharp as those in
the original Pacemaker paper. Some of this may be
due to the inherent error of attempting to reconstruct
the data from Figs. 2 and 3 in Pacemaker.

Replication of Results: E49-18

Likewise, my unprewhitened spectral results for
the E49-18 core (using the SIMPLEX chronology) are
shown in Figs. 12-14. Per the Pacemaker paper, I
also used a time increment of At=3ka. Interpolation
resulted in n=122 data points. As before, this was
one greater than their reported value of n=121, but
my interpolated timescale extends from t=127ka to
t=490ka, in very good agreement with their reported
timescale of 127—489ka.

I chose m=8 to obtain the null continua, as this
choice seems to give the best overall null continua
estimates for all three variables. As in the case of
the RC11-120 spectra, I have also included the lower
bounds of the 80% confidence intervals in my graphs.
There is a generally good visual match between my
reproduced spectra and those depicted in the second
row of Fig. 5 in Pacemaker. However, there is a major
discrepancy between their reported period of 119ka
for the dominant A peak in the % C. davisiana power
spectrum and my value (Fig. 14) of 149ka.

Very little truncation was required in this case.
Only three high-frequency spectral values within the
E49-18 60 power spectrum were slightly negative.

Replication of Results: PATCH

Finally, I include in Figs. 15-17 the power spectra
for the ELBOW chronology and the PATCH records,
obtained by appending data from the top 785cm in
the RC11-120 core to the data below 825c¢m in the
E49-18 core. The Pacemaker authors thought they
could do this because the depth of 785cm in the
RC11-120 core and the depth of 825¢cm in the E49-
18 core both corresponded to the presumed MIS 8-7
boundary, to which they assigned an age of 251Kka.
Figs. 15-17 correspond to the third row of charts in
their Fig. 5. In order to obtain their null continua in
a later part of the paper, the authors set m=8 (Hays,
Imbrie, and Shackleton 1976, 1132, endnote no. 57),
although I think m="7 gives an overall better fit for
the prewhitened results (discussed in a later paper).
This discrepancy could be due to slight differences
between the original and my reconstructed data
sets. Again, there is generally favorable agreement
between my results and those in Pacemaker.
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Only one high-frequency spectral value within the
PATCH 630 power spectrum needed to be truncated,
as well as four values in the high-frequency portion of
the PATCH SST null continuum.

For the three PATCH spectra, I have also plotted
the lower bounds of the 90% confidence intervals.

Summary

Now that we have explained the Blackman-Tukey
method and demonstrated that my code can replicate,
using the same multi-step procedure described by
the Pacemaker authors, the original results with a
good deal of precision, it is now time to discuss in
Part IIT of this series the statistical significance of
the original results, as well as the effect of the new
age assignment for the B-M reversal on the resulting
power spectra. We also discuss the effect of including
all the E49-18 data in the analysis. Unfortunately
for proponents of Milankovitch climate forcing, these
effects are quite negative.
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