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Abstract

speciation suggests that answers to the latter may aid the investigation of the former. To date within 
the young-earth community, no comprehensive studies on the relationship between genetics and the 
timing of speciation have been performed. In this study, I show that mitochondrial DNA relationships 

speciation that involves an originally created heterozygous allele pool fractionated by genetic drift.
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Introduction
As the history of the origins debate demonstrates, 

the mechanism and timing of speciation are tightly 

Darwin’s primary answer—natural selection—
was born out of his understanding of the supposed 
millions-of-years history of life. If life was ancient 
and if species appeared slowly and gradually, then 
the slow and gradual process of natural selection 

That natural selection will always act with extreme 
slowness, I fully admit . . . I do believe that natural 
selection will always act very slowly, often only at long 
intervals of time, and generally on only a very few of 
the inhabitants of the same region at the same time. 
I further believe, that this very slow, intermittent 
action of natural selection accords perfectly well with 
what geology tells us of the rate and manner at which 
the inhabitants of this world have changed. (Darwin 
1859, 108–09)
Modern evolutionists have followed suit and 

the plausibility of evolution via natural selection by 

Conversely, the young-earth (YE) creation view 
connects the mechanism and timing of speciation, 
but in a manner very different from evolutionists. 
The text of Genesis sets boundaries for the YE 
answers. According to Genesis 1, God supernaturally 

derive them via evolution from pre-existing life 
forms. Subsequently, two (unclean) or seven (clean) 

family has clearly occurred post-Flood. Even before 
the Flood, during the ~1700 years from the Creation 

had its limits. Scripture does not support the natural 

Because the Bible puts the date of creation at 

McGee 2012) and the date of the Flood around 4350 
years ago, speciation under the YE view is much 
more rapid than speciation under the evolutionary 
view. Hence, rather than rely solely on mutation 
and natural selection to explain the diversity of life 

novel mechanisms for speciation. From transposon 

YE creationists have wrestled with a multitude of 
processes in order to explain how a host of species 
might have arisen in the last few thousand years.

YE creation view have spawned unique proposals 
on the mechanism. Based on the similarity between 
creatures depicted in ancient cave art and modern 
species, Wise (1994) suggested that speciation 
rates exploded following the Flood and then rapidly 
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diminished within a few hundred years. Wise 

rather than being due to natural selection and 
mutation. 

Concurring with Wise, Wood (2002, 2003) 
observed that Scripture records the very rapid post-
Flood appearance of modern species in at least four 

a burst of speciation. However, Wood (2002, 2003, 
2013a) proposed a slightly different mechanism for 
species’ origins, one which was transposable element-

triggered. 
Which one of these many hypotheses is correct? 

One of the limitations to understanding the timing 

examining the scope of mammalian speciation 
in a more comprehensive fashion, Wood (2011) 

Observing that most mammal families are not 
speciose, Wood suggested that rapid burst speciation 

formed on the explosive speciation model. Since 

of geologic layers were deposited during the Flood, 

usefulness to the speciation question. For those 
layers that remain, a contentious debate stills exists 
as to whether the K-T boundary or the Pliocene-

window of time post-Flood with a very large diversity 
of species, adding credence to the rapid post-Flood 
speciation hypothesis and the mechanisms that 
follow from it (e.g., Cavanaugh, Wood, and Wise 

record, then the fossil layers can answer the question 
of the timing of species’ origins with less precision, 
and the hypothesis of rapid post-Flood speciation 
remains largely untested.

Theoretically, the tool most relevant to the 
questions of when and how species originated is 
genetics. Since DNA is imperfectly inherited each 
generation, extant species have within themselves 
a record of their own past, and comparative DNA 

analyses may reveal the answers to when and how 
these species originated. 

Previously, analysis of mitochondrial DNA in 
the context of the speciation question has pointed 
in the direction of the explosive speciation model. 

and he argued that rapid DNA sequence change 
was required to explain the genetic diversity among 
extant and extinct individuals. Consistent with the 
explosive speciation model, Wood concluded that 
mutation rates were high around the time of the 
Flood and then decayed to their current rates.

However, this conclusion rested entirely on the 
assumption that the ancient DNA sequences were 
reliable. Despite the popularity of the ancient DNA, 
they appear to be degraded, perhaps beyond utility 

with evolutionary times of origin that have been 
derived from the evolutionary interpretation of the 
fossil record (e.g., see Ho 2014 as an example), this 

measurements of mutation rates. In fact, the only 

was that the rates of DNA change had been constant 
through time, a uniformitarian assumption that, in 

suggested that mitochondrial DNA comparisons may 
reveal a window into the past at unprecedented time 
resolution.

Furthermore, the number of published 

increased rapidly in the last few years. As of the 
time of this writing, the entire mitochondrial DNA 

further investigation of mitochondrial DNA might 
yield insights into the timing species’ origins and 
thereby help resolve the question of the mechanism.

Materials and Methods
Sources for species counts 

Mammal species’ taxonomic information was 

Species website ( ) 

Supplemental Table 1 for a listing of the common 
names for many of the taxonomic designations used 
in this study) and exporting the results as a .csv 
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2. Microsoft Excel was used to sort and count the 
number of species per family after excluding all 

) on February 
17, 2015, and the complete list of species with 
family names was deposited in Supplemental Table 
3. Microsoft Excel was used to sort and count the 
number of species per family.

Amphibian species’ taxonomic information was 
downloaded from Amphibian Species of the World 

) on February 17, 2015, and the 
complete list of orders and families with associated 
species numbers was deposited in Supplemental 
Table 4. Microsoft Excel was used to sort and count 
the number of species per family.

Taxonomic information for species within the class 

world (

deposited in Supplemental Table 5. Microsoft Excel 
was used to sort and count the number of species per 
family.

Taxonomic information for species within the class 
Actinopterygii was downloaded from the Catalog 
of Fishes (

) 
in early 2014, and the complete catalog with species-
per-family counts was deposited in Supplemental 
Table 6. Microsoft Excel was used to sort and count 
the number of species per family. 

For analysis of the combined species-per-family 
counts across these vertebrate classes, I combined 

above into a single dataset and used Microsoft Excel 
to sort and count the number of species per family. 

Mitochondrial DNA sequence sources 
and alignment 

All sequences were downloaded from NCBI 
Nucleotide ( ) 
between March 2014 and February 2015. NCBI 
accession numbers for all sequences were listed in 
Supplemental Table 7.

All mitochondrial DNA genome alignments were 

) using default settings. 
After some alignment runs, it was obvious that the 
NCBI sequences being compared did not share the 
same designated position #1. Since the mitochondrial 

DNA genome is a circular genome, the sequences to 

all sequences shared the same position #1. After this 

Mitochondrial DNA clock calculations 
The empirically determined mitochondrial DNA 

mutation rates for Homo sapiens, Caenorhabditis 
elegans, Drosophila melanogaster, and Daphnia 
pulex were obtained from the sources described 

Homo sapiens, the 

was used. For the other species, the single base-pair 
mutation rate (i.e., not the rate that combined single 
base-pair changes and indels together) was extracted 
from each secular publication. 

The equation from which predictions were 
made for three of the groups was identical to the 

This was employed for several reasons. Because 
the human mitochondrial DNA tree for the ethnic 
groups I compared had the structure of a divergence 

section below), a divergence calculation seemed most 
appropriate. For the Caenorhabditis and Drosophila 
calculations, since I compared separated species 
to one another rather than members of the same 
population (see below), a divergence calculation was 

For D. pulex, because I compared individuals within 
a single species, I employed a coalescence calculation, 
which is the divergence calculation divided by two 
(e.g., d = r*t, not d = r*t*2). I also incorporated a wider 
range of generation times using another source (e.g., 

html, accessed March 4, 2015) in addition to the one 

groups were deposited in Supplemental Table 8.
The actual number of differences among 

individuals within these four groups was obtained by 
a variety of means. For Homo sapiens ethnic groups, I 

the sequences from the 32 diverse non-African ethnic 
groups that were compared in Ingman et al. (2000). 

the D-loop sequences, and then I stripped columns 
containing gaps with the appropriate function in 
BioEdit software (
bioedit.html). I then used BioEdit to create a sequence 
difference count matrix, from which I calculated the 
average pairwise difference and standard deviation. 
(The average of 12.8 differences that I found matched 

Supplemental Table 9 for the raw numbers).
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with whole genome sequences available in the NCBI 
Nucleotide database (all four species happened to 
be members of the genus Caenorhabditis), I aligned 

after electronically creating the reverse complement 
of the C. briggsae sequences, as per previous 

D) with gaps. I then used BioEdit to strip all columns 
containing gaps and to create a sequence difference 
count matrix, from which I calculated the average 
pairwise difference and standard deviation.

For the 16 species in the Drosophilidae family 
with whole genome sequences available in the NCBI 
Nucleotide database (all 16 species happened to be 
members of the genus Drosophila), I aligned their 

where I replaced all non-standard nucleotides (e.g., 

BioEdit to strip all columns containing gaps and 
to create a sequence difference count matrix, from 
which I calculated the average pairwise difference 
and standard deviation.

For the 28 individuals within the Daphnia pulex 
species with whole genome sequences available 
in the NCBI Nucleotide database, I aligned their 

where I replaced all non-standard nucleotides (e.g., 

BioEdit to strip all columns containing gaps and 
to create a sequence difference count matrix, from 
which I obtained the highest pairwise difference 
value between any two individuals.

Test of constant rate across lineages 
In this subset of analyses, four different datasets 

of mitochondrial DNA whole genome sequences in 
Homo sapiens

(2000). The second set of 371 sequences from various 
ethnic groups was obtained from a related source, 
the mtDB ( ). The third 
alignment compared the 53 ethnic groups from 
Ingman et al. (2000) with the three fossil human 

sequences that Carter (2007) and Carter, Criswell, 

sequence from the latter. 
The resulting alignments were loaded in BioEdit, 

W, S, V, H, D) were replaced with gaps. From the 

formatted trees after selecting the “Exclude Positions 

) was used to 

Tests of mid-point rooting 
Within the order Carnivora, all available 

mitochondrial DNA whole genome sequences 

downloaded on February 26, 2015. The sequences 

alignment was loaded in BioEdit where all non-

option. MEGA4 software (
) was used to draw a mid-point 

For species within the subfamily Bovinae, 
mitochondrial DNA whole genome sequences within 
the NCBI Nucleotide database were downloaded on 
February 13, 2015. For species within the genus Pan, 
mitochondrial DNA whole genome sequences within 
the NCBI Nucleotide database were downloaded on 
February 17, 2015. For species within the genus Ursus, 
mitochondrial DNA whole genome sequences within 
the NCBI Nucleotide database were downloaded on 
February 17, 2015. Each of these three datasets was 

resulting alignments were loaded in BioEdit where 

W, S, V, H, D) were replaced with gaps. From the 

formatted trees after selecting the “Exclude Positions 

) was used to 
draw mid-point rooted, topology-only trees from the 

from individuals within Syncerus caffer and within 
Bison bison

option. MEGA4 software (
) was used to draw a mid-point 

Testing hypotheses on the timing of speciation 

the same manner as follows: Mitochondrial DNA 
whole genome sequences were downloaded from the 
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was used to align sequences from species within the 
same family. The resulting alignment was loaded in 
BioEdit where all non-standard nucleotides (e.g., N, 

Sequences from sub-species and domestic species 
were also manually removed from the alignments 

was used to create Phylip formatted trees after 

As a test of constant rates across lineages, radiation 
style trees were also created for all 27 families using 
MEGA4 software (

). Except for the family Camelidae, 
MEGA4 was also used to draw mid-point rooted, 

lengths displayed. The image of the mid-point rooted, 

copied into Microsoft PowerPoint, and the individual 
branch lengths values were manually entered into 

added cumulatively where necessary for individual 

between two species and then dividing the distance 
into either time post-Flood (e.g., 4350 years) for on-

were converted to years. This quotient was used to 
then convert all branch length values (individual 
and cumulative) into time points. Microsoft Excel 
was used to perform linear regression on these time 
points for each family. Cumulative species numbers 
and the time points of each new speciation event 
were plotted to create the graphs in Figs. 19–44. 

Mitochondrial DNA species representation 
To calculate how many species and genera within 

each family were represented by the mitochondrial 
DNA analyses, species names and genus names from 

(Supplemental Tables 2–5) were reconciled with 
the names associated with the NCBI mitochondrial 
sequence entries. For mammal species, reconciliation 
was achieved by exploring the history of the 
taxonomic designation. In some cases, a species or 
genus name had changed between the lists, despite 
being the same creature. In these cases, no further 

the two, the creature under consideration was simply 
incorporated into a larger, combined list of species or 
genera within the family.

For species within the family Crocodylidae, 

matched the names associated with the NCBI 
mitochondrial sequence entries, and no further 
taxonomic reconciliation was needed.

For species within the family Hynobiidae, species 
and genus names from the Amphibian Species of 
the World database were reconciled with the names 
associated with the NCBI mitochondrial sequence 
entries. In the two cases were there was a species 

name had changed, requiring no further actions on 
species numbers per family.

Since the Catalog of Fishes did not list individual 
species names, no reconciliation was attempted for 

species represented by NCBI sequences were simply 
assumed to be present within the Catalog count.

Similar assumptions were made for the 
invertebrate species. Since speciation within these 
families was so vast, species and genus numbers were 
obtained from the Global Biodiversity Information 
Facility ( ), and all species and 
genera represented by NCBI sequences were simply 
assumed to be present within the GBIF count. 

Results
The extent of post-Creation and 
post-Flood speciation 

Because conclusions about the explosive 
speciation model have changed dramatically once 
large datasets were included in the analyses (e.g., 
Wood 2011), I revisited the question of the scope of 

(2011) who found that species within a family “follow 

family) followed a very rough power distribution 
(Fig. 1). In other words, most mammal families had 
few species, and a few families had many species. In 
practical terms, if the Flood ended 4350 years ago, a 
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Fig. 1. Power curve distribution of mammalian species 
per family. The amount of species per family in the class 

from the raw data with standard tools in Microsoft Excel.
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modest speciation rate of one speciation event every 
200 years would produce about 21 species by today. 
Nearly three-fourths of all mammal families had 21 

results suggested that speciation was explosive for 

The same lopsided pattern held true in other 
vertebrate classes, regardless of whether the class 

Amphibia, Fig. 3), birds (class Aves, Fig. 4), and 

many families with few species and few families with 
many species (see Supplemental Table 1 for a listing 
of the common names for many of the taxonomic 

for the class Mammalia, a power distribution seemed 
the best approximation for each dataset. 

Furthermore, when the species per family 

dataset, a power distribution matched the data even 

the higher the n (number of families) was, the 

1). Together with Wood’s (2011) results, these data 
indicate that explosive post-Flood and post-Creation 

it raised the question of whether unusual speciation 

speciation events in the YE model.

Assessing the utility of mitochondrial DNA clocks
To investigate the timing of post-Flood and post-

Creation speciation, I explored the possibility of using 
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Total families: 

73
Amphibia:

Speciation within Kinds8
7
6
5
4
3
2

Fr
eq

ue
nc

y

1
0

0 200 400 600 800
Species/Family

1000

y = 2.4498×-0.174

R2 = 0.3946

Fig. 3. Power curve distribution of amphibian species 
per family. The amount of species per family in the class 

from the raw data with standard tools in Microsoft Excel.

Total families: 
198

Fr
eq

ue
nc

y

20

0

18
16
14
12
10
8
6
4
2

Aves:
Speciation within Kinds

0 100 200 300 400 500
Species/Family

y = 7.599×-0.412

R2 = 0.5899

Fig. 4. Power curve distribution of bird species per family. 
The amount of species per family in the class Aves was 

data with standard tools in Microsoft Excel.

Total families: 
491 Actinopterygii:

Speciation within Kinds
Fr

eq
ue

nc
y

60

0

50

40

30

20

10

0 500 1000 1500 2000 2500 3000 3500
Species/Family

y = 21.029×-0.549

R2 = 0.6633

Fig. 5.
per family. The amount of species per family in the 

equation were derived from the raw data with standard 
tools in Microsoft Excel.
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the amount of mitochondrial DNA diversity matched 
the expectations of mutation change that had been 
occurring for 10,000 years or less, and it relied on the 
mitochondrial DNA sequences published at that time. 
Since then, more genomes have been published for 
more species within these groups, and I reinvestigated 
whether the results would still hold true. Furthermore, 
since 6000 years and not 10,000 years is generally 
preferred as the date of creation (Hardy and Carter 
2014), I explored whether the results would stand for 
the more recent date or whether an acceleration in 
mutation rates was required, as suggested previously 
(Wood 2012, 2013b).

from consideration mitochondrial DNA sequences 
from fossil or extinct species. Because DNA is such 

sequences will ever be obtained from samples older 

sequences from extinct species represent samples 
that have been sitting on or in the ground for 
hundreds to thousands of years, and for additional 

reasons following from the discoveries I made below, 
I left them out of my analyses.

In each of the four extant species or groups 
of species that I examined, the conclusions from 

remained the same. For example, in humans, the 
predicted mitochondrial DNA diversity in the D-loop 
of non-Africans overlapped the standard deviation 
in current DNA diversity among non-African ethnic 
groups (Fig. 7). Also, the predicted mitochondrial 
DNA diversity in the entire genomes of the three 
animal groups captured or overlapped existing DNA 
diversity (Figs. 8–10). Since these four independent 
data points represented three different phyla as well 

consistent with the YE timescale.

To date, no further mitochondrial DNA mutation 
rates have been measured in additional animal 
species. Nevertheless, for those species with a 
published mitochondrial DNA whole genome 
sequence, comparative DNA analysis was still 
possible, and the resultant patterns might be 
informative. Hence, I proceeded to interrogate the 
question of the timing of speciation by restricting 
my investigation to analysis of comparative 
mitochondrial DNA sequence patterns under a set of 
simplifying assumptions.

First, in addition to assuming that a mitochondrial 

mitochondrial DNA mutation rate was constant 
through time, I assumed that the mitochondrial 
DNA mutation rate was constant across lineages. 
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standard tools in Microsoft Excel.

Group Total Family # R2 to Power Curve
Amphibia 73 0.39

Reptilia 88 0.49

Mammalia 151 0.59

Aves 198 0.59

Actinopterygii 491 0.66

Vertebrates 1001 0.76

Table 1. 
to a power curve.
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Fig. 7.
empirically-derived mitochondrial DNA mutation rate for 
the D-loop in non-African individuals, the predicted amount 
of DNA differences after 6000 years of mutation at a constant 
rate was compared to the average D-loop difference among 
non-African ethnic groups. The height of each colored bar 
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This assumption was partially testable based on 
the presence or absence of signature patterns in the 

These signature patterns derived from an analysis of 
the human mitochondrial DNA tree for the various 
ethnic groups and from an analysis of the text of 
Genesis. According to Genesis 9:18–19, “Now the sons 

These three were the sons of Noah, and from these 

there are more than three different ethnic groups in 
existence today, our modern ethnic groups must have 

languages at Babel (Genesis 11). 

recorded in the mitochondrial DNA patterns around 
the world. Since mitochondrial DNA is inherited 
maternally, the fact of the Flood and the fact of 

about the comparative DNA patterns observable 
today. Because four women survived the Flood, no 

lineages could have given rise to the modern ethnic 
groups. In fact, no more than three should have been 
present (Carter 2010). Though Noah’s wife passed 
on her mitochondrial DNA to her three sons, her 
lineage then ceased since men do not pass on their 
mitochondrial DNA to their offspring. Instead, all 
modern mitochondrial DNA lineages should trace 

mitochondrial DNA tree of various modern ethnic 
groups, three nodes were visually apparent (Figs. 
11A–B). In addition, most of the ethnic lineages 
stemming from these three nodes sprayed out almost 
immediately rather than staggering out (Fig. 11A), 
as if they arose from a divergence event rather than 

description and timing of the Tower of Babel incident 
in Genesis 11.

This fact of the three nodes in the human 

constancy of the rates of genetic change across 
lineages. If the three nodes did indeed represent the 
sequences in the wives of Noah’s sons, then those 
nodes represented an identical point in time, which 
means that all their descendants had been mutating 
for an identical length of time. For non-Africans 

tree), the current and empirically measured rate of 
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change in the D-loop matches the predictions of the 
hypothesis that the rate of change has been constant 
with time (Fig. 7). 

By contrast, the section of the tree containing 
exclusively African lineages had a maximum branch 
length about twice as long as the non-African branches 
(Fig. 11). Presumably, some of the lineages in the 
African branch had been mutating twice as fast as the 
non-African branches, giving rise to the discrepancy 
in branch lengths. This hypothesis had preliminary 
support in the discovery that another form of genetic 
change, recombination, occurs faster in African than 
in non-Africans (Hinch et al. 2011). Together, these 
facts suggested that visual examination of radiation 
style trees with visually obvious roots might identify 
lineages with faster or slower rates than the overall 
rate. Hence, before performing species’ time of origin 

analyses within animal families, I created a radiation 
style tree for each family, visually inspected the 
trees for obvious roots, and visually compared the 
branch lengths about the proposed root to assess the 
possibility of rate heterogeneity across species within 
a family (Supplemental Figs. 1–24, 49–51). 

The branch length patterns among the three 
nodes in the human tree lent further support to the 
exclusion of fossil sequences from consideration in the 
present analyses. When the Homo heidelbergensis, 
Homo sp. Altai, and Homo sapiens neanderthalensis 
mitochondrial genomes were included in the 
analysis, two facts were immediately apparent. 
First, these sequences were indeed quite divergent 
from the mitochondrial DNA sequences of extant 
human ethnic groups (Fig. 11C). Second, all three 
fossil sequences branched off from the exclusively 
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Fig. 11. Three-node structure of the human mitochondrial DNA tree. A Whole genome alignment and resultant 

One of the nodes was exclusively African lineages, and some of the branches stemming from this node were about 
twice as long as the other branches. B Whole genome alignment and resultant phylogenetic tree of 371 human 
individuals from various human ethnic groups. Similar to A, visual inspection demonstrated the existence of three 

A one of the nodes was almost exclusively African lineages, and some of the 
branches stemming from this node were about twice as long as the other branches. C Same data as A but with three 
fossil human sequences included. Similar to A

A one of the nodes was exclusively African lineages, and some of the branches stemming from 
this node were about twice as long as the other branches. Surprisingly, all three fossil human individuals branched 
off from the exclusively African lineage, and their branch lengths were much longer than those of the extant human 
individuals.
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African lineage (Fig. 11C). This suggested that, 
if the fossil sequences were indeed reliable, they 
represented a subsection of the African lineage with 
an unusually high mutation rate. In fact, the high 
rate may have caused the extinction of these ancient 
human populations. Alternatively, these sequences 

two explanations was true, fossil sequences clearly 
represented an unusual set of data, and these data 
did not contradict the assumption in modern lineages 
of constant rates of mitochondrial DNA mutation 
through time.

Since these results implied that the three nodes 
represented the sequences of the three wives of Noah’s 
sons, the data further implied that the sequence of 

them. Previous YE creationist studies (Carter, 

placed her sequence, not between these three nodes, 
but exactly centered on one of them (Fig. 12). This 

the mitochondrial genome, and since the node upon 

of the sequence samples, the parameters of their 
methods almost guaranteed that Eve would land 
exactly at the node most represented. Alternatively, 
since so few generations passed between Adam and 
Noah according to Genesis 5, one of the wives of 
Noah’s sons may have inherited her DNA sequence 
with little to no mutations from Eve’s original created 

and inferences of the present study were reconcilable 
with previously published YE creationist data on 

Speciation rate analyses required a second 
assumption besides the assumption of rate 
homogeneity. Since species have formed post-Creation 
and post-Flood, there obviously existed a point in time 

measured mitochondrial DNA mutation rates for the 

each family’s mitochondrial DNA tree was impossible 
at present. 

pass the visual rate homogeneity test (Supplemental 

 gi|29690840|gb|AY195777.1| Homo sapiens haplotype A10L1A2 mitochondrion  complete genome

 gi|29690882|gb|AY195780.1| Homo sapiens haplotype A2L1 mitochondrion  complete genome

 gi|84682334|gb|DQ341058.1| Homo sapiens isolate 1 L0a2a Tor29  mitochondrion  complete genome

 gi|75905883|gb|AY963585.2| Homo sapiens isolate 14 L0f Tor65  mitochondrion  complete genome
 gi|29690686|gb|AY195766.1| Homo sapiens haplotype A11L2b mitochondrion  complete genome

 gi|48596208|gb|AY195785.2| Homo sapiens haplotype A6L2C mitochondrion  complete genome

 gi|84682390|gb|DQ341062.1| Homo sapiens isolate 5 L2d Tor38  mitochondrion  complete genome
 gi|48596191|gb|AY195776.2| Homo sapiens haplotype A9L2a mitochondrion  complete genome

 gi|48596215|gb|AY195788.2| Homo sapiens haplotype A5L2A1 mitochondrion  complete genome

 gi|32348254|gb|AY289070.1| Homo sapiens isolate CAM mitochondrion  complete genome gi|32891369|gb|AY255153.1| Homo sapiens isolate XJ8420 mitochondrion  complete genome

 gi|78775961|gb|DQ272112.1| Homo sapiens isolate Hui45 mitochondrion  complete genome

 gi|29690434|gb|AY195748.1| Homo sapiens haplotype Na2D mitochondrion  complete genome  gi|32891537|gb|AY255165.1| Homo sapiens isolate GD7830 mitochondrion  complete genome
 gi|75905871|gb|AY963573.2| Homo sapiens isolate 2 D4b2b Tor50  mitochondrion  complete genome

 gi|48596219|gb|AY195790.2| Homo sapiens haplotype As8D mitochondrion  complete genome gi|50295419|gb|AY519491.2| Homo sapiens isolate NganasanD4 mitochondrion  complete genome gi|78775975|gb|DQ272113.1| Homo sapiens isolate EWK4 mitochondrion  complete genome
 gi|48526882|gb|AY255134.2| Homo sapiens isolate LN7550 mitochondrion  complete genome

 gi|32891467|gb|AY255160.1| Homo sapiens isolate QD8166 mitochondrion  complete genome

 gi|78775891|gb|DQ272107.1| Homo sapiens isolate QH9505 mitochondrion  complete genome

 gi|32891341|gb|AY255151.1| Homo sapiens isolate GD7829 mitochondrion  complete genome

 gi|32891495|gb|AY255162.1| Homo sapiens isolate GD7837n mitochondrion  complete genome
 gi|50295412|gb|AY570525.2| Homo sapiens isolate TuvanD5 mitochondrion  complete genome

 gi|46242454|gb|AY570524.1| Homo sapiens isolate Mansi10512 mitochondrion  complete genome gi|32891592|gb|AY255169.1| Homo sapiens isolate YN289 mitochondrion  complete genome

 gi|71373130|gb|DQ137398.1| Homo sapiens isolate Kol17 mitochondrion  complete genome

 gi|71373144|gb|DQ137399.1| Homo sapiens isolate UV144 mitochondrion  complete genome

 gi|71373158|gb|DQ137400.1| Homo sapiens isolate UV241 mitochondrion  complete genome

 gi|71373172|gb|DQ137401.1| Homo sapiens isolate UV364 mitochondrion  complete genome

 gi|86450583|gb|DQ372879.1| Homo sapiens isolate PO332 mitochondrion  complete genome
 gi|86450639|gb|DQ372883.1| Homo sapiens isolate T726 mitochondrion  complete genome

 gi|60257630|gb|AY922298.1| Homo sapiens isolate SW23 mitochondrion  complete genome

 gi|60257602|gb|AY922296.1| Homo sapiens isolate R56 mitochondrion  complete genome

 gi|60257756|gb|AY922307.1| Homo sapiens isolate R65 mitochondrion  complete genome

 gi|93280540|gb|DQ408677.2| Homo sapiens clone P31 mitochondrion  complete genome

 gi|48596153|gb|AY195755.2| Homo sapiens haplotype As11G mitochondrion  complete genome

 gi|32891425|gb|AY255157.1| Homo sapiens isolate XJ8416 mitochondrion  complete genome

 gi|32891173|gb|AY255139.1| Homo sapiens isolate EWK28 mitochondrion  complete genome

 gi|78775905|gb|DQ272108.1| Homo sapiens isolate Hani10 mitochondrion  complete genome

 gi|78775947|gb|DQ272111.1| Homo sapiens isolate UZB6 mitochondrion  complete genome gi|78775919|gb|DQ272109.1| Homo sapiens isolate QH9661 mitochondrion  complete genome
 gi|78775933|gb|DQ272110.1| Homo sapiens isolate PK36 mitochondrion  complete genome

 gi|48596164|gb|AY195762.2| Homo sapiens haplotype As7G mitochondrion  complete genome

 gi|32891145|gb|AY255137.1| Homo sapiens isolate SD10368 mitochondrion  complete genome

 gi|32891229|gb|AY255143.1| Homo sapiens isolate DW48 mitochondrion  complete genome

 gi|78775989|gb|DQ272114.1| Homo sapiens isolate Miao239 mitochondrion  complete genome

 gi|32891383|gb|AY255154.1| Homo sapiens isolate SD10334 mitochondrion  complete genome

 gi|48131404|gb|AY255178.2| Homo sapiens isolate YN163 mitochondrion  complete genome

 gi|78776017|gb|DQ272116.1| Homo sapiens isolate Shui10 mitochondrion  complete genome

 gi|75905874|gb|AY963576.2| Homo sapiens isolate 5 M21a Tor53  mitochondrion  complete genome

 gi|75905875|gb|AY963577.2| Homo sapiens isolate 6 M21b Tor54  mitochondrion  complete genome

 gi|78776003|gb|DQ272115.1| Homo sapiens isolate Mg50 mitochondrion  complete genome

 gi|75905880|gb|AY963582.2| Homo sapiens isolate 11 M9* Tor62  mitochondrion  complete genome
 gi|32891215|gb|AY255142.1| Homo sapiens isolate Miao271 mitochondrion  complete genome

 gi|32891299|gb|AY255148.1| Homo sapiens isolate GD7817 mitochondrion  complete genome

 gi|32891411|gb|AY255156.1| Homo sapiens isolate SD10324 mitochondrion  complete genome

 gi|94449820|gb|AY950291.2| Homo sapiens isolate O19 mitochondrion  complete genome gi|94449823|gb|AY950292.2| Homo sapiens isolate O20 mitochondrion  complete genome gi|94449827|gb|AY950295.2| Homo sapiens isolate O42 mitochondrion  complete genome

 gi|94449830|gb|AY950296.2| Homo sapiens isolate GA8 mitochondrion  complete genome

 gi|94449836|gb|AY950299.2| Homo sapiens isolate GA13 mitochondrion  complete genome

 gi|60257126|gb|AY922262.1| Homo sapiens isolate R110 mitochondrion  complete genome

 gi|60257308|gb|AY922275.1| Homo sapiens isolate T69 mitochondrion  complete genome

 gi|60257224|gb|AY922269.1| Homo sapiens isolate T77 mitochondrion  complete genome

 gi|60257560|gb|AY922293.1| Homo sapiens isolate R37 mitochondrion  complete genome

 gi|60257490|gb|AY922288.1| Homo sapiens isolate A46 mitochondrion  complete genome
 gi|60257434|gb|AY922284.1| Homo sapiens isolate T20 mitochondrion  complete genome

 gi|60257476|gb|AY922287.1| Homo sapiens isolate T135 mitochondrion  complete genome

 gi|32348268|gb|AY289071.1| Homo sapiens isolate T1331 mitochondrion  complete genome

 gi|60257336|gb|AY922277.1| Homo sapiens isolate T153 mitochondrion  complete genome

 gi|32348282|gb|AY289072.1| Homo sapiens isolate K11b mitochondrion  complete genome
 gi|60257014|gb|AY922254.1| Homo sapiens isolate R64 mitochondrion  complete genome

 gi|60257028|gb|AY922255.1| Homo sapiens isolate T8 mitochondrion  complete genome gi|60257042|gb|AY922256.1| Homo sapiens isolate A47 mitochondrion  complete genome

 gi|60257056|gb|AY922257.1| Homo sapiens isolate T14 mitochondrion  complete genome

 gi|60257210|gb|AY922268.1| Homo sapiens isolate B107 mitochondrion  complete genome

 gi|60257070|gb|AY922258.1| Homo sapiens isolate B156 mitochondrion  complete genome

 gi|60257168|gb|AY922265.1| Homo sapiens isolate R45 mitochondrion  complete genome

 gi|93280541|gb|DQ408678.2| Homo sapiens c lone R1 mitochondrion  complete genome

 gi|60257196|gb|AY922267.1| Homo sapiens isolate C26 mitochondrion  complete genome

 gi|60257238|gb|AY922270.1| Homo sapiens isolate C64 mitochondrion  complete genome

 gi|93280537|gb|DQ408674.2| Homo sapiens clone OR82 mitochondrion  complete genome

 gi|60257462|gb|AY922286.1| Homo sapiens isolate A24 mitochondrion  complete genome

 gi|60257518|gb|AY922290.1| Homo sapiens isolate T72 mitochondrion  complete genome
 gi|60257350|gb|AY922278.1| Homo sapiens isolate R44 mitochondrion  complete genome

 gi|93280542|gb|DQ408679.2| Homo sapiens clone T12 mitochondrion  complete genome

 gi|60257112|gb|AY922261.1| Homo sapiens isolate C51 mitochondrion  complete genome

 gi|60257532|gb|AY922291.1| Homo sapiens isolate T23 mitochondrion  complete genome

 gi|60257616|gb|AY922297.1| Homo sapiens isolate T12 mitochondrion  complete genome

 gi|71373256|gb|DQ137407.1| Homo sapiens isolate UV361 mitochondrion  complete genome

 gi|71373270|gb|DQ137408.1| Homo sapiens isolate UV122 mitochondrion  complete genome gi|71373284|gb|DQ137409.1| Homo sapiens isolate UV158 mitochondrion  complete genome

 gi|60257686|gb|AY922302.1| Homo sapiens isolate R188 mitochondrion  complete genome

 gi|75905879|gb|AY963581.2| Homo sapiens isolate 10 M21c Tor61  mitochondrion  complete genome

 gi|60257700|gb|AY922303.1| Homo sapiens isolate R102 mitochondrion  complete genome

 gi|60257742|gb|AY922306.1| Homo sapiens isolate T11 mitochondrion  complete genome

 gi|60257728|gb|AY922305.1| Homo sapiens isolate T3 mitochondrion  complete genome

 gi|60257770|gb|AY922308.1| Homo sapiens isolate T27 mitochondrion  complete genome

 gi|48596144|gb|AY195753.2| Homo sapiens haplotype As6C mitochondrion  complete genome

 gi|50295411|gb|AY615360.2| Homo sapiens isolate TofalarM10448HgC mitochondrion  complete genome

 gi|32891662|gb|AY255174.1| Homo sapiens isolate XJ8435 mitochondrion  complete genome

 gi|50295414|gb|AY519485.2| Homo sapiens isolate EvenkiC2a mitochondrion  complete genome

 gi|48596168|gb|AY195763.2| Homo sapiens haplotype As4C mitochondrion  complete genome gi|50295415|gb|AY519487.2| Homo sapiens isolate KoriakC2b mitochondrion  complete genome

 gi|50295417|gb|AY519490.2| Homo sapiens isolate NganasanC2b mitochondrion  complete genome

 gi|48596180|gb|AY195772.2| Homo sapiens haplotype As5C mitochondrion  complete genome gi|46242482|gb|AY570526.1| Homo sapiens isolate TUVLI mitochondrion  complete genome

 gi|78776101|gb|DQ272122.1| Homo sapiens isolate Oro 38 mitochondrion  complete genome

 gi|32891690|gb|AY255176.1| Homo sapiens isolate LN7710 mitochondrion  complete genome

 gi|48596156|gb|AY195759.2| Homo sapiens haplotype Na4C mitochondrion  complete genome

 gi|50295424|gb|AY519496.2| Homo sapiens isolate UlchiC1a mitochondrion  complete genome

 gi|47717682|gb|AY615359.1| Homo sapiens isolate NganasanM10320HgC mitochondrion  complete genome

 gi|47717710|gb|AY615361.1| Homo sapiens isolate Ulchi32HgC mitochondrion  complete genome gi|78776045|gb|DQ272118.1| Homo sapiens isolate YK03 mitochondrion  complete genome

 gi|29690616|gb|AY195761.1| Homo sapiens haplotype As12Z mitochondrion  complete genome

 gi|50295421|gb|AY519493.2| Homo sapiens isolate TofalarZ mitochondrion  complete genome

 gi|32891397|gb|AY255155.1| Homo sapiens isolate WH6979 mitochondrion  complete genome

 gi|32891327|gb|AY255150.1| Homo sapiens isolate WH6958 mitochondrion  complete genome

 gi|32891481|gb|AY255161.1| Homo sapiens isolate QD8159 mitochondrion  complete genome

 gi|50295425|gb|AY519497.2| Homo sapiens isolate UlchiS mitochondrion  complete genome

 gi|60257378|gb|AY922280.1| Homo sapiens isolate T159 mitochondrion  complete genome

 gi|94315496|gb|DQ513521.1| Homo sapiens isolate PS38 mitochondrion  complete genome

 gi|94315510|gb|DQ513522.1| Homo sapiens isolate PJ10 mitochondrion  complete genome

 gi|60257000|gb|AY922253.1| Homo sapiens isolate A57 mitochondrion  complete genome
 gi|60257140|gb|AY922263.1| Homo sapiens isolate A68 mitochondrion  complete genome

 gi|60257182|gb|AY922266.1| Homo sapiens isolate T21 mitochondrion  complete genome

 gi|93280539|gb|DQ408676.2| Homo sapiens c lone P12 mitochondrion  complete genome

 gi|60257252|gb|AY922271.1| Homo sapiens isolate R59 mitochondrion  complete genome

 gi|60257588|gb|AY922295.1| Homo sapiens isolate T6 mitochondrion  complete genome

 gi|60257574|gb|AY922294.1| Homo sapiens isolate T71 mitochondrion  complete genome

 gi|32348324|gb|AY289075.1| Homo sapiens isolate 961 mitochondrion  complete genome

 gi|32348422|gb|AY289082.1| Homo sapiens isolate WE4 mitochondrion  complete genome

 gi|32348408|gb|AY289081.1| Homo sapiens isolate WE23 mitochondrion  complete genome

 gi|32348534|gb|AY289090.1| Homo sapiens isolate SH23 mitochondrion  complete genome

 gi|86450653|gb|DQ372884.1| Homo sapiens isolate CI153 mitochondrion  complete genome gi|86450667|gb|DQ372885.1| Homo sapiens isolate WS72 mitochondrion  complete genome

 gi|32348464|gb|AY289085.1| Homo sapiens isolate NG12 mitochondrion  complete genome

 gi|86450597|gb|DQ372880.1| Homo sapiens isolate PO392 mitochondrion  complete genome gi|86450625|gb|DQ372882.1| Homo sapiens isolate MO304 mitochondrion  complete genome

 gi|32348366|gb|AY289078.1| Homo sapiens isolate GP4 mitochondrion  complete genome

 gi|32348520|gb|AY289089.1| Homo sapiens isolate SH19 mitochondrion  complete genome

 gi|32348380|gb|AY289079.1| Homo sapiens isolate WE16 mitochondrion  complete genome

 gi|61393479|gb|AY956412.1| Homo sapiens isolate UasiQ2a001 mitochondrion  complete genome

 gi|256946672|gb|AY956413.2| Homo sapiens isolate MadkQ2b001 mitochondrion  complete genome

 gi|61393513|gb|AY956414.1| Homo sapiens isolate MaraQ2c001 mitochondrion  complete genome

 gi|60257084|gb|AY922259.1| Homo sapiens isolate B66 mitochondrion  complete genome gi|60257098|gb|AY922260.1| Homo sapiens isolate B47 mitochondrion  complete genome

 gi|60257280|gb|AY922273.1| Homo sapiens isolate C48 mitochondrion  complete genome

 gi|60257448|gb|AY922285.1| Homo sapiens isolate C8 mitochondrion  complete genome

 gi|93280538|gb|DQ408675.2| Homo sapiens clone OR89 mitochondrion  complete genome

 gi|60257504|gb|AY922289.1| Homo sapiens isolate R61 mitochondrion  complete genome

 gi|60257546|gb|AY922292.1| Homo sapiens isolate T13 mitochondrion  complete genome

 gi|60257392|gb|AY922281.1| Homo sapiens isolate A64 mitochondrion  complete genome gi|60257406|gb|AY922282.1| Homo sapiens isolate B26 mitochondrion  complete genome

 gi|60257420|gb|AY922283.1| Homo sapiens isolate R81 mitochondrion  complete genome

 gi|60257644|gb|AY922299.1| Homo sapiens isolate R58 mitochondrion  complete genome

 gi|60257294|gb|AY922274.1| Homo sapiens isolate C56 mitochondrion  complete genome

 gi|60257714|gb|AY922304.1| Homo sapiens isolate C39 mitochondrion  complete genome

 gi|93280536|gb|DQ408672.2| Homo sapiens clone M42 mitochondrion  complete genome

 gi|84682670|gb|DQ341082.1| Homo sapiens isolate 25 M1 Tor196  mitochondrion  complete genome

 gi|60257672|gb|AY922301.1| Homo sapiens isolate B177 mitochondrion  complete genome

 gi|32348310|gb|AY289074.1| Homo sapiens isolate M306 mitochondrion  complete genome

 gi|60257154|gb|AY922264.1| Homo sapiens isolate R134 mitochondrion  complete genome

 gi|60257364|gb|AY922279.1| Homo sapiens isolate R114 mitochondrion  complete genome gi|60257266|gb|AY922272.1| Homo sapiens isolate T17 mitochondrion  complete genome

 gi|32348631|gb|AY289097.1| Homo sapiens isolate 526 mitochondrion  complete genome

 gi|32348645|gb|AY289098.1| Homo sapiens isolate 600 mitochondrion  complete genome

 gi|78776157|gb|DQ272126.1| Homo sapiens isolate She54 mitochondrion  complete genome

 gi|32891453|gb|AY255159.1| Homo sapiens isolate Miao248 mitochondrion  complete genome

 gi|32891620|gb|AY255171.1| Homo sapiens isolate SD10362 mitochondrion  complete genome

 gi|32891648|gb|AY255173.1| Homo sapiens isolate XJ8450 mitochondrion  complete genome

 gi|32891271|gb|AY255146.1| Homo sapiens isolate Mg246 mitochondrion  complete genome

 gi|78776031|gb|DQ272117.1| Homo sapiens isolate Bouyei18 mitochondrion  complete genome

 gi|32891439|gb|AY255158.1| Homo sapiens isolate LN7711 mitochondrion  complete genome

 gi|86450429|gb|DQ372868.1| Homo sapiens isolate AMI15 mitochondrion  complete genome

 gi|86450541|gb|DQ372876.1| Homo sapiens isolate MJ22 mitochondrion  complete genome

 gi|60257322|gb|AY922276.1| Homo sapiens isolate C182 mitochondrion  complete genome

 gi|93280543|gb|DQ408680.2| Homo sapiens clone T9 mitochondrion  complete genome

 gi|71373186|gb|DQ137402.1| Homo sapiens isolate UV99 mitochondrion  complete genome gi|71373214|gb|DQ137404.1| Homo sapiens isolate UV171 mitochondrion  complete genome gi|71373200|gb|DQ137403.1| Homo sapiens isolate UV178 mitochondrion  complete genome

 gi|71373228|gb|DQ137405.1| Homo sapiens isolate 1111F mitochondrion  complete genome

 gi|71373242|gb|DQ137406.1| Homo sapiens isolate UV772 mitochondrion  complete genome

 gi|71373298|gb|DQ137410.1| Homo sapiens isolate Aita7876 mitochondrion  complete genome

 gi|71373312|gb|DQ137411.1| Homo sapiens isolate Aita7942 mitochondrion  complete genome

 gi|32891634|gb|AY255172.1| Homo sapiens isolate GD7825 mitochondrion  complete genome

 gi|75905881|gb|AY963583.2| Homo sapiens isolate 12 M22 Tor63  mitochondrion  complete genome

gi|60257658|gb|AY922300.1| Homo sapiens isolate C4 mitochondrion  complete genome

 gi|94449824|gb|AY950293.2| Homo sapiens isolate O21 mitochondrion  complete genome

 gi|94449825|gb|AY950294.2| Homo sapiens isolate O23 mitochondrion  complete genomegi|93117374|gb|DQ408673.2| Homo sapiens c lone O9 mitochondrion  complete genome

gi|94449834|gb|AY950297.2| Homo sapiens isolate GA9 mitochondrion  complete genomegi|94449835|gb|AY950298.2| Homo sapiens isolate GA11 mitochondrion  complete genomegi|94449839|gb|AY950300.2| Homo sapiens isolate GA15 mitochondrion  complete genome

gi|113706990|gb|DQ404442.3| Homo sapiens isolate AUR6 mitochondrion  complete genome

gi|113706992|gb|DQ404443.3| Homo sapiens isolate AUR7 mitochondrion  complete genome

gi|113706996|gb|DQ404445.3| Homo sapiens isolate AUR25 mitochondrion  complete genome

 gi|84682572|gb|DQ341075.1| Homo sapiens isolate 18 L3f Tor80  mitochondrion  complete genome

 gi|84682600|gb|DQ341077.1| Homo sapiens isolate 20 L3f1 Tor75  mitochondrion  complete genome

gi|84682614|gb|DQ341078.1| Homo sapiens isolate 21 L3f1 Tor81  mitochondrion  complete genome

gi|84682586|gb|DQ341076.1| Homo sapiens isolate 19 L3f Tor83  mitochondrion  complete genome

 gi|32348058|gb|AY289056.1| Homo sapiens isolate Aus20 mitochondrion  complete genome

 gi|32348086|gb|AY289058.1| Homo sapiens isolate Aus22 mitochondrion  complete genome

 gi|113707000|gb|DQ404447.3| Homo sapiens isolate AUD38 mitochondrion  complete genome

 gi|32348100|gb|AY289059.1| Homo sapiens isolate Aus23 mitochondrion  complete genome

 gi|32348198|gb|AY289066.1| Homo sapiens isolate Y6 mitochondrion  complete genome gi|32348212|gb|AY289067.1| Homo sapiens isolate Y7 mitochondrion  complete genome

 gi|29690784|gb|AY195773.1| Homo sapiens haplotype E18X mitochondrion  complete genome

 gi|29690980|gb|AY195787.1| Homo sapiens haplotype Na3X mitochondrion  complete genome

 gi|32348142|gb|AY289062.1| Homo sapiens isolate B6 mitochondrion  complete genome

 gi|48596157|gb|AY195760.2| Homo sapiens haplotype As1A mitochondrion  complete genome

 gi|29690756|gb|AY195771.1| Homo sapiens haplotype As2A mitochondrion  complete genome

 gi|78776115|gb|DQ272123.1| Homo sapiens isolate Kor70 mitochondrion  complete genome

 gi|32891243|gb|AY255144.1| Homo sapiens isolate WH6954 mitochondrion  complete genome

 gi|32891551|gb|AY255166.1| Homo sapiens isolate WH6980 mitochondrion  complete genome

gi|75905873|gb|AY963575.2| Homo sapiens isolate 4 A4 Tor52  mitochondrion  complete genome

gi|40795218|gb|AY519488.1| Homo sapiens isolate Mansi1A1 mitochondrion  complete genome

gi|48596214|gb|AY195786.2| Homo sapiens haplotype Na5A mitochondrion  complete genome

gi|40795190|gb|AY519486.1| Homo sapiens isolate Ket33A1 mitochondrion  complete genome

gi|32347988|gb|AY289051.1| Homo sapiens isolate Aus13 mitochondrion  complete genome

gi|32348128|gb|AY289061.1| Homo sapiens isolate B4 mitochondrion  complete genome

gi|32348114|gb|AY289060.1| Homo sapiens isolate B2 mitochondrion  complete genome

gi|32891201|gb|AY255141.1| Homo sapiens isolate GD7834 mitochondrion  complete genome

gi|51451064|gb|AY714031.1| Homo sapiens isolate R148 mitochondrion  complete genome

gi|75905876|gb|AY963578.2| Homo sapiens isolate 7 N22 Tor55  mitochondrion  complete genome

Eve1.0

gi|51451260|gb|AY714045.1| Homo sapiens isolate C134 mitochondrion  complete genome

 gi|40846641|gb|AY495103.1| Homo sapiens isolate H1-14 mitochondrion  complete genome

gi|51894980|gb|AY738976.1| Homo sapiens isolate Tor37 ZE672  mitochondrion  complete genomegi|40846837|gb|AY495117.1| Homo sapiens isolate H1-28 mitochondrion  complete genome

gi|51895008|gb|AY738978.1| Homo sapiens isolate Tor39 #107  mitochondrion  complete genome

gi|40846865|gb|AY495119.1| Homo sapiens isolate H1-30 mitochondrion  complete genome

gi|40846585|gb|AY495099.1| Homo sapiens isolate H1-10 mitochondrion  complete genome

gi|40846767|gb|AY495112.1| Homo sapiens isolate H1-23 mitochondrion  complete genomegi|51894994|gb|AY738977.1| Homo sapiens isolate Tor38 #116  mitochondrion  complete genome

gi|51894952|gb|AY738974.1| Homo sapiens isolate Tor35 ZE1852  mitochondrion  complete genome

gi|51895022|gb|AY738979.1| Homo sapiens isolate Tor40 #1  mitochondrion  complete genomegi|51895036|gb|AY738980.1| Homo sapiens isolate Tor41 ZE603  mitochondrion  complete genome

gi|51894938|gb|AY738973.1| Homo sapiens isolate Tor34 #111  mitochondrion  complete genome

gi|48596190|gb|AY195775.2| Homo sapiens haplotype E1H mitochondrion  complete genome

gi|51894966|gb|AY738975.1| Homo sapiens isolate Tor36 ZE657  mitochondrion  complete genome

gi|51895050|gb|AY738981.1| Homo sapiens isolate Tor42 ZEsa  mitochondrion  complete genome

gi|51895064|gb|AY738982.1| Homo sapiens isolate Tor43 ZE2200  mitochondrion  complete genomegi|40846599|gb|AY495100.1| Homo sapiens isolate H1-11 mitochondrion  complete genome

gi|40846543|gb|AY495096.1| Homo sapiens isolate H1-07 mitochondrion  complete genome

gi|40846781|gb|AY495113.1| Homo sapiens isolate H1-24 mitochondrion  complete genome

gi|40846627|gb|AY495102.1| Homo sapiens isolate H1-13 mitochondrion  complete genome

gi|40847397|gb|AY495157.1| Homo sapiens isolate H4-01 mitochondrion  complete genomegi|40847453|gb|AY495161.1| Homo sapiens isolate H4-05 mitochondrion  complete genomegi|40847467|gb|AY495162.1| Homo sapiens isolate H4-06 mitochondrion  complete genomegi|40847495|gb|AY495164.1| Homo sapiens isolate H4-08 mitochondrion  complete genomegi|40847411|gb|AY495158.1| Homo sapiens isolate H4-02 mitochondrion  complete genomegi|40847425|gb|AY495159.1| Homo sapiens isolate H4-03 mitochondrion  complete genomegi|40847439|gb|AY495160.1| Homo sapiens isolate H4-04 mitochondrion  complete genomegi|40847481|gb|AY495163.1| Homo sapiens isolate H4-07 mitochondrion  complete genomegi|40847817|gb|AY495187.1| Homo sapiens isolate H6-11 mitochondrion  complete genomegi|40847145|gb|AY495139.1| Homo sapiens isolate H2-19 mitochondrion  complete genomegi|40847173|gb|AY495141.1| Homo sapiens isolate H2-21 mitochondrion  complete genome

gi|40846935|gb|AY495124.1| Homo sapiens isolate H2-04 mitochondrion  complete genomegi|40847215|gb|AY495144.1| Homo sapiens isolate H2-24 mitochondrion  complete genome

gi|51894910|gb|AY738971.1| Homo sapiens isolate Tor32 #115  mitochondrion  complete genome

gi|40846515|gb|AY495094.1| Homo sapiens isolate H1-05 mitochondrion  complete genome

gi|69938882|gb|AY495106.2| Homo sapiens isolate H1-17 mitochondrion  complete genomegi|40847327|gb|AY495152.1| Homo sapiens isolate H3-07 mitochondrion  complete genome

gi|40847257|gb|AY495147.1| Homo sapiens isolate H3-02 mitochondrion  complete genome

gi|40847341|gb|AY495153.1| Homo sapiens isolate H3-08 mitochondrion  complete genome

gi|40847299|gb|AY495150.1| Homo sapiens isolate H3-05 mitochondrion  complete genomegi|40847313|gb|AY495151.1| Homo sapiens isolate H3-06 mitochondrion  complete genome

gi|40847355|gb|AY495154.1| Homo sapiens isolate H3-09 mitochondrion  complete genomegi|51894854|gb|AY738967.1| Homo sapiens isolate Tor28 ZE573  mitochondrion  complete genome

gi|40847789|gb|AY495185.1| Homo sapiens isolate H6-09 mitochondrion  complete genome

gi|51894924|gb|AY738972.1| Homo sapiens isolate Tor33 ZE2147  mitochondrion  complete genome

gi|51450308|gb|AY713977.1| Homo sapiens isolate R99 mitochondrion  complete genome

gi|40847831|gb|AY495188.1| Homo sapiens isolate H7-01 mitochondrion  complete genomegi|40847887|gb|AY495192.1| Homo sapiens isolate H7-05 mitochondrion  complete genomegi|40847901|gb|AY495193.1| Homo sapiens isolate H7-06 mitochondrion  complete genomegi|40847915|gb|AY495194.1| Homo sapiens isolate H7-07 mitochondrion  complete genome

gi|40847859|gb|AY495190.1| Homo sapiens isolate H7-03 mitochondrion  complete genomegi|40847873|gb|AY495191.1| Homo sapiens isolate H7-04 mitochondrion  complete genome

gi|40847845|gb|AY495189.1| Homo sapiens isolate H7-02 mitochondrion  complete genome

gi|113200490|gb|J01415.2|HUMMTCG Homo sapiens mitochondrion  complete genome
gi|51894798|gb|AY738963.1| Homo sapiens isolate Tor24 #102  mitochondrion  complete genome

gi|51894784|gb|AY738962.1| Homo sapiens isolate Tor23 #94  mitochondrion  complete genome

gi|51894868|gb|AY738968.1| Homo sapiens isolate Tor29 ZE1044  mitochondrion  complete genomegi|51894882|gb|AY738969.1| Homo sapiens isolate Tor30 #110  mitochondrion  complete genome

gi|40847103|gb|AY495136.1| Homo sapiens isolate H2-16 mitochondrion  complete genome

gi|40847159|gb|AY495140.1| Homo sapiens isolate H2-20 mitochondrion  complete genome

gi|40846907|gb|AY495122.1| Homo sapiens isolate H2-02 mitochondrion  complete genome

gi|40846473|gb|AY495091.1| Homo sapiens isolate H1-02 mitochondrion  complete genomegi|40846487|gb|AY495092.1| Homo sapiens isolate H1-03 mitochondrion  complete genomegi|40846557|gb|AY495097.1| Homo sapiens isolate H1-08 mitochondrion  complete genomegi|40846963|gb|AY495126.1| Homo sapiens isolate H2-06 mitochondrion  complete genomegi|40846739|gb|AY495110.1| Homo sapiens isolate H1-21 mitochondrion  complete genome

gi|69938884|gb|AY495127.2| Homo sapiens isolate H2-07 mitochondrion  complete genome

gi|69938885|gb|AY495128.2| Homo sapiens isolate H2-08 mitochondrion  complete genomegi|69938886|gb|AY495143.2| Homo sapiens isolate H2-23 mitochondrion  complete genomegi|40847061|gb|AY495133.1| Homo sapiens isolate H2-13 mitochondrion  complete genomegi|40847131|gb|AY495138.1| Homo sapiens isolate H2-18 mitochondrion  complete genome

gi|40847089|gb|AY495135.1| Homo sapiens isolate H2-15 mitochondrion  complete genome

gi|51894896|gb|AY738970.1| Homo sapiens isolate Tor31 ZE1584  mitochondrion  complete genome

gi|40846613|gb|AY495101.1| Homo sapiens isolate H1-12 mitochondrion  complete genome

gi|40846501|gb|AY495093.1| Homo sapiens isolate H1-04 mitochondrion  complete genome

gi|69938887|gb|AY495145.2| Homo sapiens isolate H2-25 mitochondrion  complete genome

gi|48596136|gb|AY195746.2| Homo sapiens haplotype E3H mitochondrion  complete genome

gi|51895330|gb|AY739001.1| Homo sapiens isolate Tor62 ZE348  mitochondrion  complete genome

gi|48596143|gb|AY195752.2| Homo sapiens haplotype E7H mitochondrion  complete genome

gi|40847271|gb|AY495148.1| Homo sapiens isolate H3-03 mitochondrion  complete genomegi|40847369|gb|AY495155.1| Homo sapiens isolate H3-10 mitochondrion  complete genome

gi|51895148|gb|AY738988.1| Homo sapiens isolate Tor49 ZE820  mitochondrion  complete genome

gi|69938888|gb|AY495156.2| Homo sapiens isolate H3-11 mitochondrion  complete genome

gi|51895092|gb|AY738984.1| Homo sapiens isolate Tor45 #99  mitochondrion  complete genome

gi|51895106|gb|AY738985.1| Homo sapiens isolate Tor46 ZE100  mitochondrion  complete genome

gi|51895162|gb|AY738989.1| Homo sapiens isolate Tor50 #100  mitochondrion  complete genomegi|51895134|gb|AY738987.1| Homo sapiens isolate Tor48 #97  mitochondrion  complete genomegi|51895204|gb|AY738992.1| Homo sapiens isolate Tor53 #114  mitochondrion  complete genome

gi|51895176|gb|AY738990.1| Homo sapiens isolate Tor51 ZE623  mitochondrion  complete genome

gi|51895078|gb|AY738983.1| Homo sapiens isolate Tor44 ZE1208  mitochondrion  complete genomegi|40847719|gb|AY495180.1| Homo sapiens isolate H6-04 mitochondrion  complete genome

gi|40847677|gb|AY495177.1| Homo sapiens isolate H6-01 mitochondrion  complete genome

gi|51895120|gb|AY738986.1| Homo sapiens isolate Tor47 ZE2176  mitochondrion  complete genome

gi|40846893|gb|AY495121.1| Homo sapiens isolate H2-01 mitochondrion  complete genome

gi|40847033|gb|AY495131.1| Homo sapiens isolate H2-11 mitochondrion  complete genomegi|40847019|gb|AY495130.1| Homo sapiens isolate H2-10 mitochondrion  complete genomegi|40847117|gb|AY495137.1| Homo sapiens isolate H2-17 mitochondrion  complete genomegi|40846949|gb|AY495125.1| Homo sapiens isolate H2-05 mitochondrion  complete genome

gi|40847047|gb|AY495132.1| Homo sapiens isolate H2-12 mitochondrion  complete genome

gi|40847187|gb|AY495142.1| Homo sapiens isolate H2-22 mitochondrion  complete genome

gi|51894812|gb|AY738964.1| Homo sapiens isolate Tor25 ZE1209  mitochondrion  complete genome

gi|51894840|gb|AY738966.1| Homo sapiens isolate Tor27 ZE327  mitochondrion  complete genome

gi|40846655|gb|AY495104.1| Homo sapiens isolate H1-15 mitochondrion  complete genomegi|40846459|gb|AY495090.1| Homo sapiens isolate H1-01 mitochondrion  complete genomegi|40846879|gb|AY495120.1| Homo sapiens isolate H1-31 mitochondrion  complete genomegi|40846809|gb|AY495115.1| Homo sapiens isolate H1-26 mitochondrion  complete genome

gi|40846711|gb|AY495108.1| Homo sapiens isolate H1-19 mitochondrion  complete genome

gi|69938881|gb|AY495105.2| Homo sapiens isolate H1-16 mitochondrion  complete genome

gi|51894826|gb|AY738965.1| Homo sapiens isolate Tor26 ZEsg  mitochondrion  complete genome

gi|51895302|gb|AY738999.1| Homo sapiens isolate Tor60 ZE975  mitochondrion  complete genome

gi|51895218|gb|AY738993.1| Homo sapiens isolate Tor54 ZE2242  mitochondrion  complete genomegi|51895232|gb|AY738994.1| Homo sapiens isolate Tor55 #108  mitochondrion  complete genomegi|51895316|gb|AY739000.1| Homo sapiens isolate Tor61 #90  mitochondrion  complete genome

gi|40846571|gb|AY495098.1| Homo sapiens isolate H1-09 mitochondrion  complete genome

gi|40846795|gb|AY495114.1| Homo sapiens isolate H1-25 mitochondrion  complete genome

gi|40849623|gb|AY495316.1| Homo sapiens isolate V1-11 mitochondrion  complete genome

gi|40846823|gb|AY495116.1| Homo sapiens isolate H1-27 mitochondrion  complete genome

gi|51895288|gb|AY738998.1| Homo sapiens isolate Tor59 ZEft  mitochondrion  complete genome

gi|51895246|gb|AY738995.1| Homo sapiens isolate Tor56 #87  mitochondrion  complete genome

gi|40847005|gb|AY495129.1| Homo sapiens isolate H2-09 mitochondrion  complete genome
gi|51895274|gb|AY738997.1| Homo sapiens isolate Tor58 ZE730  mitochondrion  complete genome

gi|51895260|gb|AY738996.1| Homo sapiens isolate Tor57 #92  mitochondrion  complete genomegi|40846697|gb|AY495107.1| Homo sapiens isolate H1-18 mitochondrion  complete genome

gi|51450378|gb|AY713982.1| Homo sapiens isolate B6 mitochondrion  complete genomegi|40847285|gb|AY495149.1| Homo sapiens isolate H3-04 mitochondrion  complete genome

gi|51450350|gb|AY713980.1| Homo sapiens isolate R91 mitochondrion  complete genome

gi|48596138|gb|AY195747.2| Homo sapiens haplotype E4H mitochondrion  complete genomegi|40847509|gb|AY495165.1| Homo sapiens isolate H5-01 mitochondrion  complete genomegi|40847551|gb|AY495168.1| Homo sapiens isolate H5-04 mitochondrion  complete genome

gi|40847523|gb|AY495166.1| Homo sapiens isolate H5-02 mitochondrion  complete genomegi|40847593|gb|AY495171.1| Homo sapiens isolate H5-07 mitochondrion  complete genome

gi|40847579|gb|AY495170.1| Homo sapiens isolate H5-06 mitochondrion  complete genome

gi|40847537|gb|AY495167.1| Homo sapiens isolate H5-03 mitochondrion  complete genomegi|40847663|gb|AY495176.1| Homo sapiens isolate H5-12 mitochondrion  complete genome

gi|51894644|gb|AY738952.1| Homo sapiens isolate Tor13 ZE2210  mitochondrion  complete genome

gi|40847649|gb|AY495175.1| Homo sapiens isolate H5-11 mitochondrion  complete genome

gi|51894672|gb|AY738954.1| Homo sapiens isolate Tor15 ZE2213  mitochondrion  complete genomegi|40847621|gb|AY495173.1| Homo sapiens isolate H5-09 mitochondrion  complete genome
gi|51894658|gb|AY738953.1| Homo sapiens isolate Tor14 ZE1742  mitochondrion  complete genome

gi|40847565|gb|AY495169.1| Homo sapiens isolate H5-05 mitochondrion  complete genome
gi|40847607|gb|AY495172.1| Homo sapiens isolate H5-08 mitochondrion  complete genomegi|40847635|gb|AY495174.1| Homo sapiens isolate H5-10 mitochondrion  complete genomegi|51894756|gb|AY738960.1| Homo sapiens isolate Tor21 ZE620  mitochondrion  complete genomegi|51450560|gb|AY713995.1| Homo sapiens isolate B15 mitochondrion  complete genomegi|40847243|gb|AY495146.1| Homo sapiens isolate H3-01 mitochondrion  complete genome

gi|29690476|gb|AY195751.1| Homo sapiens haplotype E2H mitochondrion  complete genome gi|51894728|gb|AY738958.1| Homo sapiens isolate Tor19 ZE2181  mitochondrion  complete genome
gi|51894742|gb|AY738959.1| Homo sapiens isolate Tor20 #103  mitochondrion  complete genome

gi|51894588|gb|AY738948.1| Homo sapiens isolate Tor9 #96  mitochondrion  complete genome

gi|51895190|gb|AY738991.1| Homo sapiens isolate Tor52 #98  mitochondrion  complete genomegi|29690560|gb|AY195757.1| Homo sapiens haplotype E6H mitochondrion  complete genomegi|51894602|gb|AY738949.1| Homo sapiens isolate Tor10 ZE1563  mitochondrion  complete genome

gi|48596155|gb|AY195758.2| Homo sapiens haplotype E5H mitochondrion  complete genome

gi|51894714|gb|AY738957.1| Homo sapiens isolate Tor18 #109  mitochondrion  complete genome

gi|51450322|gb|AY713978.1| Homo sapiens isolate B49 mitochondrion  complete genome

gi|51894686|gb|AY738955.1| Homo sapiens isolate Tor16 #95  mitochondrion  complete genomegi|51894700|gb|AY738956.1| Homo sapiens isolate Tor17 #93  mitochondrion  complete genome
gi|51894770|gb|AY738961.1| Homo sapiens isolate Tor22 #117  mitochondrion  complete genome

gi|40847075|gb|AY495134.1| Homo sapiens isolate H2-14 mitochondrion  complete genome

gi|51894616|gb|AY738950.1| Homo sapiens isolate Tor11 ZEus  mitochondrion  complete genome

gi|40846529|gb|AY495095.1| Homo sapiens isolate H1-06 mitochondrion  complete genomegi|40846753|gb|AY495111.1| Homo sapiens isolate H1-22 mitochondrion  complete genomegi|40847691|gb|AY495178.1| Homo sapiens isolate H6-02 mitochondrion  complete genomegi|40847705|gb|AY495179.1| Homo sapiens isolate H6-03 mitochondrion  complete genomegi|40847733|gb|AY495181.1| Homo sapiens isolate H6-05 mitochondrion  complete genomegi|40847747|gb|AY495182.1| Homo sapiens isolate H6-06 mitochondrion  complete genomegi|40847761|gb|AY495183.1| Homo sapiens isolate H6-07 mitochondrion  complete genome

gi|40847775|gb|AY495184.1| Homo sapiens isolate H6-08 mitochondrion  complete genome

gi|40847803|gb|AY495186.1| Homo sapiens isolate H6-10 mitochondrion  complete genome

gi|69938883|gb|AY495123.2| Homo sapiens isolate H2-03 mitochondrion  complete genome

gi|51894630|gb|AY738951.1| Homo sapiens isolate Tor12 ZE1090  mitochondrion  complete genome

gi|29690462|gb|AY195750.1| Homo sapiens haplotype E17V mitochondrion  complete genomegi|40849511|gb|AY495308.1| Homo sapiens isolate V1-03 mitochondrion  complete genomegi|40849763|gb|AY495326.1| Homo sapiens isolate V1-21 mitochondrion  complete genomegi|40849777|gb|AY495327.1| Homo sapiens isolate V1-22 mitochondrion  complete genomegi|40849553|gb|AY495311.1| Homo sapiens isolate V1-06 mitochondrion  complete genomegi|40849609|gb|AY495315.1| Homo sapiens isolate V1-10 mitochondrion  complete genomegi|40849679|gb|AY495320.1| Homo sapiens isolate V1-15 mitochondrion  complete genomegi|40849595|gb|AY495314.1| Homo sapiens isolate V1-09 mitochondrion  complete genomegi|40849651|gb|AY495318.1| Homo sapiens isolate V1-13 mitochondrion  complete genome

gi|40849693|gb|AY495321.1| Homo sapiens isolate V1-16 mitochondrion  complete genome

gi|40849525|gb|AY495309.1| Homo sapiens isolate V1-04 mitochondrion  complete genomegi|40849497|gb|AY495307.1| Homo sapiens isolate V1-02 mitochondrion  complete genome

gi|51894560|gb|AY738946.1| Homo sapiens isolate Tor7 #17  mitochondrion  complete genomegi|40849567|gb|AY495312.1| Homo sapiens isolate V1-07 mitochondrion  complete genome

gi|40849805|gb|AY495329.1| Homo sapiens isolate V1-24 mitochondrion  complete genomegi|51450336|gb|AY713979.1| Homo sapiens isolate B20 mitochondrion  complete genome

gi|40849637|gb|AY495317.1| Homo sapiens isolate V1-12 mitochondrion  complete genomegi|40849721|gb|AY495323.1| Homo sapiens isolate V1-18 mitochondrion  complete genomegi|40849707|gb|AY495322.1| Homo sapiens isolate V1-17 mitochondrion  complete genome

gi|40849539|gb|AY495310.1| Homo sapiens isolate V1-05 mitochondrion  complete genomegi|40849665|gb|AY495319.1| Homo sapiens isolate V1-14 mitochondrion  complete genomegi|40849581|gb|AY495313.1| Homo sapiens isolate V1-08 mitochondrion  complete genome

gi|40849791|gb|AY495328.1| Homo sapiens isolate V1-23 mitochondrion  complete genomegi|40849819|gb|AY495330.1| Homo sapiens isolate V1-25 mitochondrion  complete genome

gi|51894574|gb|AY738947.1| Homo sapiens isolate Tor8 ZE1932  mitochondrion  complete genomegi|40849749|gb|AY495325.1| Homo sapiens isolate V1-20 mitochondrion  complete genome

gi|40849735|gb|AY495324.1| Homo sapiens isolate V1-19 mitochondrion  complete genome

gi|48596196|gb|AY195781.2| Homo sapiens haplotype E16V mitochondrion  complete genome

gi|40849483|gb|AY495306.1| Homo sapiens isolate V1-01 mitochondrion  complete genome

gi|51894546|gb|AY738945.1| Homo sapiens isolate Tor6 #113  mitochondrion  complete genome

gi|40846725|gb|AY495109.1| Homo sapiens isolate H1-20 mitochondrion  complete genomegi|40846851|gb|AY495118.1| Homo sapiens isolate H1-29 mitochondrion  complete genome

gi|51894532|gb|AY738944.1| Homo sapiens isolate Tor5 #112  mitochondrion  complete genome

gi|51450434|gb|AY713986.1| Homo sapiens isolate C65 mitochondrion  complete genome

gi|51894490|gb|AY738941.1| Homo sapiens isolate Tor2 ZE1043  mitochondrion  complete genome

gi|51450364|gb|AY713981.1| Homo sapiens isolate R98 mitochondrion  complete genome

gi|51894504|gb|AY738942.1| Homo sapiens isolate Tor3 #20  mitochondrion  complete genome

gi|51894518|gb|AY738943.1| Homo sapiens isolate Tor4 ZE2030  mitochondrion  complete genome

gi|51450294|gb|AY713976.1| Homo sapiens isolate R89 mitochondrion  complete genome

gi|51450448|gb|AY713987.1| Homo sapiens isolate T26 mitochondrion  complete genome

gi|51450462|gb|AY713988.1| Homo sapiens isolate R53 mitochondrion  complete genome

gi|51894476|gb|AY738940.1| Homo sapiens isolate Tor1 #43  mitochondrion  complete genome

gi|51450616|gb|AY713999.1| Homo sapiens isolate C180 mitochondrion  complete genome

gi|32348002|gb|AY289052.1| Homo sapiens isolate Aus14 mitochondrion  complete genome

gi|32348184|gb|AY289065.1| Homo sapiens isolate F5 mitochondrion  complete genome

gi|32348548|gb|AY289091.1| Homo sapiens isolate SH29 mitochondrion  complete genome

gi|32348478|gb|AY289086.1| Homo sapiens isolate NG29 mitochondrion  complete genome

gi|32348492|gb|AY289087.1| Homo sapiens isolate SH10 mitochondrion  complete genome

gi|32348562|gb|AY289092.1| Homo sapiens isolate SH33 mitochondrion  complete genome

gi|32348156|gb|AY289063.1| Homo sapiens isolate E4 mitochondrion  complete genome

gi|32348450|gb|AY289084.1| Homo sapiens isolate 36 mitochondrion  complete genome

gi|32348506|gb|AY289088.1| Homo sapiens isolate SH17 mitochondrion  complete genome

gi|86450457|gb|DQ372870.1| Homo sapiens isolate TRO122 mitochondrion  complete genomegi|86450485|gb|DQ372872.1| Homo sapiens isolate TRO133 mitochondrion  complete genome

gi|48596135|gb|AY195745.2| Homo sapiens haplotype E12T mitochondrion  complete genome

gi|48596175|gb|AY195767.2| Homo sapiens haplotype E11T mitochondrion  complete genome

gi|40848937|gb|AY495267.1| Homo sapiens isolate T1-01 mitochondrion  complete genome

gi|40848951|gb|AY495268.1| Homo sapiens isolate T1-02 mitochondrion  complete genomegi|40848979|gb|AY495270.1| Homo sapiens isolate T1-04 mitochondrion  complete genomegi|40849007|gb|AY495272.1| Homo sapiens isolate T1-06 mitochondrion  complete genomegi|40849021|gb|AY495273.1| Homo sapiens isolate T1-07 mitochondrion  complete genomegi|40849077|gb|AY495277.1| Homo sapiens isolate T1-11 mitochondrion  complete genomegi|40849091|gb|AY495278.1| Homo sapiens isolate T1-12 mitochondrion  complete genomegi|40849105|gb|AY495279.1| Homo sapiens isolate T1-13 mitochondrion  complete genomegi|40849161|gb|AY495283.1| Homo sapiens isolate T1-18 mitochondrion  complete genomegi|40849189|gb|AY495285.1| Homo sapiens isolate T1-20 mitochondrion  complete genomegi|40849203|gb|AY495286.1| Homo sapiens isolate T1-21 mitochondrion  complete genomegi|40849217|gb|AY495287.1| Homo sapiens isolate T1-22 mitochondrion  complete genome

gi|40849063|gb|AY495276.1| Homo sapiens isolate T1-10 mitochondrion  complete genome

gi|40848965|gb|AY495269.1| Homo sapiens isolate T1-03 mitochondrion  complete genomegi|40849035|gb|AY495274.1| Homo sapiens isolate T1-08 mitochondrion  complete genome

gi|40849049|gb|AY495275.1| Homo sapiens isolate T1-09 mitochondrion  complete genome

gi|40849119|gb|AY495280.1| Homo sapiens isolate T1-14 mitochondrion  complete genome

gi|40849147|gb|AY495282.1| Homo sapiens isolate T1-17 mitochondrion  complete genome

gi|40849175|gb|AY495284.1| Homo sapiens isolate T1-19 mitochondrion  complete genome

gi|40848993|gb|AY495271.1| Homo sapiens isolate T1-05 mitochondrion  complete genomegi|40849133|gb|AY495281.1| Homo sapiens isolate T1-15 mitochondrion  complete genome

gi|51450854|gb|AY714016.1| Homo sapiens isolate C200 mitochondrion  complete genome

gi|40849385|gb|AY495299.1| Homo sapiens isolate T3-02 mitochondrion  complete genome

gi|40849469|gb|AY495305.1| Homo sapiens isolate T3-08 mitochondrion  complete genome

gi|51450938|gb|AY714022.1| Homo sapiens isolate R186 mitochondrion  complete genomegi|40849371|gb|AY495298.1| Homo sapiens isolate T3-01 mitochondrion  complete genome

gi|40849399|gb|AY495300.1| Homo sapiens isolate T3-03 mitochondrion  complete genomegi|40849441|gb|AY495303.1| Homo sapiens isolate T3-06 mitochondrion  complete genome

gi|40849413|gb|AY495301.1| Homo sapiens isolate T3-04 mitochondrion  complete genomegi|40849427|gb|AY495302.1| Homo sapiens isolate T3-05 mitochondrion  complete genomegi|40849455|gb|AY495304.1| Homo sapiens isolate T3-07 mitochondrion  complete genome

gi|51451036|gb|AY714029.1| Homo sapiens isolate C169 mitochondrion  complete genome

gi|51451148|gb|AY714037.1| Homo sapiens isolate A54 mitochondrion  complete genome

gi|51450840|gb|AY714015.1| Homo sapiens isolate R92 mitochondrion  complete genomegi|40849231|gb|AY495288.1| Homo sapiens isolate T2-01 mitochondrion  complete genomegi|40849245|gb|AY495289.1| Homo sapiens isolate T2-02 mitochondrion  complete genomegi|40849273|gb|AY495291.1| Homo sapiens isolate T2-04 mitochondrion  complete genomegi|40849287|gb|AY495292.1| Homo sapiens isolate T2-05 mitochondrion  complete genomegi|40849301|gb|AY495293.1| Homo sapiens isolate T2-06 mitochondrion  complete genome

gi|40849329|gb|AY495295.1| Homo sapiens isolate T2-08 mitochondrion  complete genome

gi|40849357|gb|AY495297.1| Homo sapiens isolate T2-10 mitochondrion  complete genome

gi|40849259|gb|AY495290.1| Homo sapiens isolate T2-03 mitochondrion  complete genome

gi|40849315|gb|AY495294.1| Homo sapiens isolate T2-07 mitochondrion  complete genome

gi|51451134|gb|AY714036.1| Homo sapiens isolate C21 mitochondrion  complete genome

gi|40849343|gb|AY495296.1| Homo sapiens isolate T2-09 mitochondrion  complete genome

gi|48596151|gb|AY195754.2| Homo sapiens haplotype E9J mitochondrion  complete genomegi|40847971|gb|AY495198.1| Homo sapiens isolate J1-04 mitochondrion  complete genomegi|40848111|gb|AY495208.1| Homo sapiens isolate J1-14 mitochondrion  complete genome

gi|51451106|gb|AY714034.1| Homo sapiens isolate R154 mitochondrion  complete genome

gi|40848027|gb|AY495202.1| Homo sapiens isolate J1-08 mitochondrion  complete genome

gi|40848139|gb|AY495210.1| Homo sapiens isolate J2-01 mitochondrion  complete genomegi|40848223|gb|AY495216.1| Homo sapiens isolate J2-07 mitochondrion  complete genome

gi|48596189|gb|AY195774.2| Homo sapiens haplotype E10J mitochondrion  complete genome

gi|40847957|gb|AY495197.1| Homo sapiens isolate J1-03 mitochondrion  complete genomegi|40847999|gb|AY495200.1| Homo sapiens isolate J1-06 mitochondrion  complete genomegi|40847943|gb|AY495196.1| Homo sapiens isolate J1-02 mitochondrion  complete genome

gi|40848125|gb|AY495209.1| Homo sapiens isolate J1-15 mitochondrion  complete genome

gi|40848069|gb|AY495205.1| Homo sapiens isolate J1-11 mitochondrion  complete genome

gi|40848083|gb|AY495206.1| Homo sapiens isolate J1-12 mitochondrion  complete genome

gi|40847985|gb|AY495199.1| Homo sapiens isolate J1-05 mitochondrion  complete genome

gi|40848055|gb|AY495204.1| Homo sapiens isolate J1-10 mitochondrion  complete genome

gi|40848167|gb|AY495212.1| Homo sapiens isolate J2-03 mitochondrion  complete genome

gi|40847929|gb|AY495195.1| Homo sapiens isolate J1-01 mitochondrion  complete genome

gi|40848013|gb|AY495201.1| Homo sapiens isolate J1-07 mitochondrion  complete genomegi|40848097|gb|AY495207.1| Homo sapiens isolate J1-13 mitochondrion  complete genomegi|40848153|gb|AY495211.1| Homo sapiens isolate J2-02 mitochondrion  complete genome

gi|40848181|gb|AY495213.1| Homo sapiens isolate J2-04 mitochondrion  complete genomegi|40848237|gb|AY495217.1| Homo sapiens isolate J2-08 mitochondrion  complete genomegi|40848195|gb|AY495214.1| Homo sapiens isolate J2-05 mitochondrion  complete genome

gi|40848209|gb|AY495215.1| Homo sapiens isolate J2-06 mitochondrion  complete genome

gi|40848041|gb|AY495203.1| Homo sapiens isolate J1-09 mitochondrion  complete genome

gi|40848307|gb|AY495222.1| Homo sapiens isolate J3-05 mitochondrion  complete genome

gi|40848251|gb|AY495218.1| Homo sapiens isolate J3-01 mitochondrion  complete genomegi|40848265|gb|AY495219.1| Homo sapiens isolate J3-02 mitochondrion  complete genomegi|40848293|gb|AY495221.1| Homo sapiens isolate J3-04 mitochondrion  complete genomegi|40848391|gb|AY495228.1| Homo sapiens isolate J3-11 mitochondrion  complete genomegi|40848419|gb|AY495230.1| Homo sapiens isolate J3-13 mitochondrion  complete genome

gi|40848321|gb|AY495223.1| Homo sapiens isolate J3-06 mitochondrion  complete genome

gi|40848349|gb|AY495225.1| Homo sapiens isolate J3-08 mitochondrion  complete genomegi|40848335|gb|AY495224.1| Homo sapiens isolate J3-07 mitochondrion  complete genome

gi|40848363|gb|AY495226.1| Homo sapiens isolate J3-09 mitochondrion  complete genome

gi|40848279|gb|AY495220.1| Homo sapiens isolate J3-03 mitochondrion  complete genome

gi|40848377|gb|AY495227.1| Homo sapiens isolate J3-10 mitochondrion  complete genome

gi|40848405|gb|AY495229.1| Homo sapiens isolate J3-12 mitochondrion  complete genome

gi|51451092|gb|AY714033.1| Homo sapiens isolate R80 mitochondrion  complete genome

gi|51451120|gb|AY714035.1| Homo sapiens isolate B30 mitochondrion  complete genome

gi|40848433|gb|AY495231.1| Homo sapiens isolate J4-01 mitochondrion  complete genome

gi|40848489|gb|AY495235.1| Homo sapiens isolate J4-05 mitochondrion  complete genomegi|40848475|gb|AY495234.1| Homo sapiens isolate J4-04 mitochondrion  complete genome

gi|40848531|gb|AY495238.1| Homo sapiens isolate J4-08 mitochondrion  complete genome

gi|40848447|gb|AY495232.1| Homo sapiens isolate J4-02 mitochondrion  complete genome

gi|40848461|gb|AY495233.1| Homo sapiens isolate J4-03 mitochondrion  complete genome

gi|40848503|gb|AY495236.1| Homo sapiens isolate J4-06 mitochondrion  complete genome

gi|40848517|gb|AY495237.1| Homo sapiens isolate J4-07 mitochondrion  complete genome

gi|48596193|gb|AY195778.2| Homo sapiens haplotype E8J mitochondrion  complete genome

gi|51450728|gb|AY714007.1| Homo sapiens isolate B70 mitochondrion  complete genome
gi|51450644|gb|AY714001.1| Homo sapiens isolate T124 mitochondrion  complete genome

gi|51451078|gb|AY714032.1| Homo sapiens isolate C60 mitochondrion  complete genome

gi|32348016|gb|AY289053.1| Homo sapiens isolate Aus15 mitochondrion  complete genome

gi|32348044|gb|AY289055.1| Homo sapiens isolate Aus17 mitochondrion  complete genome

gi|113706998|gb|DQ404446.3| Homo sapiens isolate AUD32 mitochondrion  complete genome

gi|32348072|gb|AY289057.1| Homo sapiens isolate Aus21 mitochondrion  complete genome

gi|113706994|gb|DQ404444.3| Homo sapiens isolate AUR17 mitochondrion  complete genome

gi|32348170|gb|AY289064.1| Homo sapiens isolate E9 mitochondrion  complete genome

gi|32348030|gb|AY289054.1| Homo sapiens isolate Aus16 mitochondrion  complete genome

gi|75905882|gb|AY963584.2| Homo sapiens isolate 13 R21 Tor64  mitochondrion  complete genome

gi|51450546|gb|AY713994.1| Homo sapiens isolate C195 mitochondrion  complete genome

gi|51450896|gb|AY714019.1| Homo sapiens isolate T130 mitochondrion  complete genome

gi|51451022|gb|AY714028.1| Homo sapiens isolate A163 mitochondrion  complete genome

gi|51450924|gb|AY714021.1| Homo sapiens isolate C110 mitochondrion  complete genome

gi|51450966|gb|AY714024.1| Homo sapiens isolate C35 mitochondrion  complete genome

gi|51451050|gb|AY714030.1| Homo sapiens isolate T1 mitochondrion  complete genome

gi|32348603|gb|AY289095.1| Homo sapiens isolate 496 mitochondrion  complete genome

gi|32348617|gb|AY289096.1| Homo sapiens isolate 513 mitochondrion  complete genome

gi|32348659|gb|AY289099.1| Homo sapiens isolate DCH002 mitochondrion  complete genome

gi|48596221|gb|AY195791.2| Homo sapiens haplotype As10F mitochondrion  complete genome

gi|61724355|gb|AY963572.1| Homo sapiens isolate 1 F1a1 Tor49  mitochondrion  complete genome

gi|66394216|gb|AY950289.2| Homo sapiens isolate N4 mitochondrion  complete genome

gi|32891676|gb|AY255175.1| Homo sapiens isolate GD7824 mitochondrion  complete genome

gi|32891523|gb|AY255164.1| Homo sapiens isolate GD7811 mitochondrion  complete genome

gi|78776129|gb|DQ272124.1| Homo sapiens isolate Dong35 mitochondrion  complete genome

gi|32891704|gb|AY255177.1| Homo sapiens isolate QD8167 mitochondrion  complete genome

gi|166362175|gb|DQ272125.2| Homo sapiens isolate YK38 mitochondrion  complete genome

gi|32891579|gb|AY255168.1| Homo sapiens isolate GD7809 mitochondrion  complete genome

gi|32891746|gb|AY255180.1| Homo sapiens isolate QD8147 mitochondrion  complete genome

gi|32891565|gb|AY255167.1| Homo sapiens isolate XJ8451 mitochondrion  complete genome

gi|61743586|gb|AY972053.1| Homo sapiens isolate QJ383 mitochondrion  complete genome

gi|32891355|gb|AY255152.1| Homo sapiens isolate SD10352 mitochondrion  complete genome

gi|75905877|gb|AY963579.3| Homo sapiens isolate 8 R9b Tor56  mitochondrion  complete genome

gi|51450392|gb|AY713983.1| Homo sapiens isolate A30 mitochondrion  complete genomegi|51450406|gb|AY713984.1| Homo sapiens isolate A26 mitochondrion  complete genome

gi|51450420|gb|AY713985.1| Homo sapiens isolate A65 mitochondrion  complete genome

gi|51450476|gb|AY713989.1| Homo sapiens isolate A18 mitochondrion  complete genomegi|51450504|gb|AY713991.1| Homo sapiens isolate A61 mitochondrion  complete genome gi|51450588|gb|AY713997.1| Homo sapiens isolate A40 mitochondrion  complete genome

 gi|51450630|gb|AY714000.1| Homo sapiens isolate A52 mitochondrion  complete genome

 gi|51450658|gb|AY714002.1| Homo sapiens isolate B46 mitochondrion  complete genome

 gi|51450574|gb|AY713996.1| Homo sapiens isolate B53 mitochondrion  complete genome

 gi|51450532|gb|AY713993.1| Homo sapiens isolate R96 mitochondrion  complete genome

 gi|51450602|gb|AY713998.1| Homo sapiens isolate T100 mitochondrion  complete genome

gi|32348226|gb|AY289068.1| Homo sapiens isolate C1112 mitochondrion  complete genome

gi|32348394|gb|AY289080.1| Homo sapiens isolate WE18 mitochondrion  complete genome

gi|86450569|gb|DQ372878.1| Homo sapiens isolate PO314 mitochondrion  complete genome gi|75905872|gb|AY963574.2| Homo sapiens isolate 3 B4a Tor51  mitochondrion  complete genome gi|32348701|gb|AY289102.1| Homo sapiens mitochondrion  complete genome gi|86450681|gb|DQ372886.1| Homo sapiens isolate TL36 mitochondrion  complete genome

 gi|86450611|gb|DQ372881.1| Homo sapiens isolate MF025 mitochondrion  complete genome

 gi|32348589|gb|AY289094.1| Homo sapiens isolate S1220 mitochondrion  complete genome

 gi|32348352|gb|AY289077.1| Homo sapiens isolate CP8 mitochondrion  complete genome

 gi|32348240|gb|AY289069.1| Homo sapiens isolate C1190 mitochondrion  complete genome gi|32348575|gb|AY289093.1| Homo sapiens isolate S1216 mitochondrion  complete genome

 gi|32348436|gb|AY289083.1| Homo sapiens isolate WE7 mitochondrion  complete genome

 gi|86450555|gb|DQ372877.1| Homo sapiens isolate MJ86 mitochondrion  complete genome

 gi|32348338|gb|AY289076.1| Homo sapiens isolate 100 mitochondrion  complete genome

 gi|86450513|gb|DQ372874.1| Homo sapiens isolate KAP19 mitochondrion  complete genome gi|86450527|gb|DQ372875.1| Homo sapiens isolate KAP89 mitochondrion  complete genome

 gi|86450499|gb|DQ372873.1| Homo sapiens isolate TRO137 mitochondrion  complete genome

 gi|58333751|emb|AJ842746.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Ta083

 gi|58333743|emb|AJ842745.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Am034

 gi|58333767|emb|AJ842748.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Am111

 gi|58333759|emb|AJ842747.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Ya012

 gi|58333775|emb|AJ842749.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Am145 gi|86450471|gb|DQ372871.1| Homo sapiens isolate TRO131 mitochondrion  complete genome

 gi|58333729|emb|AJ842744.1| Homo sapiens complete mitochondrial genome  haplotype B4a1a  indiv idual Am015

 gi|48596178|gb|AY195770.2| Homo sapiens haplotype As3B mitochondrion  complete genome

 gi|50295420|gb|AY519492.2| Homo sapiens isolate TofalarB4 mitochondrion  complete genome

 gi|50295423|gb|AY519495.2| Homo sapiens isolate TuvanB4 mitochondrion  complete genome

 gi|78776073|gb|DQ272120.1| Homo sapiens isolate Shui102 mitochondrion  complete genome

 gi|58333783|emb|AJ842750.1| Homo sapiens complete mitochondrial genome  haplotype B4a2  indiv idual Pw012

 gi|58333791|emb|AJ842751.1| Homo sapiens complete mitochondrial genome  haplotype B4a2  indiv idual Ya015

 gi|32891089|gb|AY255133.1| Homo sapiens isolate GD7812 mitochondrion  complete genome

 gi|32348673|gb|AY289100.1| Homo sapiens isolate Sb13 mitochondrion  complete genome

 gi|32348687|gb|AY289101.1| Homo sapiens isolate Sb29 mitochondrion  complete genome

 gi|32891313|gb|AY255149.1| Homo sapiens isolate LN7552 mitochondrion  complete genome

 gi|48596141|gb|AY195749.2| Homo sapiens haplotype Na1B mitochondrion  complete genome

 gi|32891606|gb|AY255170.1| Homo sapiens isolate GD7813 mitochondrion  complete genome

 gi|50295422|gb|AY519494.2| Homo sapiens isolate TubalarB1 mitochondrion  complete genome

 gi|78776059|gb|DQ272119.1| Homo sapiens isolate Mg231 mitochondrion  complete genome

 gi|32891117|gb|AY255135.1| Homo sapiens isolate LN7589 mitochondrion  complete genome

 gi|32891187|gb|AY255140.1| Homo sapiens isolate QD8141 mitochondrion  complete genome

 gi|50295413|gb|AY519484.2| Homo sapiens isolate BuriatB3 mitochondrion  complete genome

 gi|48526883|gb|AY255136.2| Homo sapiens isolate SD10313 mitochondrion  complete genome

 gi|51451288|gb|AY714047.1| Homo sapiens isolate C31 mitochondrion  complete genome

 gi|51451330|gb|AY714050.1| Homo sapiens isolate A174 mitochondrion  complete genome

 gi|32891257|gb|AY255145.1| Homo sapiens isolate WH6967 mitochondrion  complete genome

 gi|66356283|gb|AY950286.1| Homo sapiens isolate N1 mitochondrion  complete genome gi|66356285|gb|AY950288.1| Homo sapiens isolate N6 mitochondrion  complete genome

 gi|66356286|gb|AY950290.1| Homo sapiens isolate N20 mitochondrion  complete genome

 gi|66356284|gb|AY950287.1| Homo sapiens isolate N2 mitochondrion  complete genome

 gi|86450443|gb|DQ372869.1| Homo sapiens isolate PAI9 mitochondrion  complete genome

 gi|32891732|gb|AY255179.1| Homo sapiens isolate WH6973 mitochondrion  complete genome

 gi|50295416|gb|AY519489.2| Homo sapiens isolate NegidalB5 mitochondrion  complete genome

 gi|32891285|gb|AY255147.1| Homo sapiens isolate LN7595 mitochondrion  complete genome

 gi|32891509|gb|AY255163.1| Homo sapiens isolate QD8168 mitochondrion  complete genome

 gi|32348296|gb|AY289073.1| Homo sapiens isolate K4b mitochondrion  complete genome

 gi|57903982|gb|AY882396.1| Homo sapiens isolate 18 U1a Tor9  mitochondrion  complete genome

 gi|51451162|gb|AY714038.1| Homo sapiens isolate C132 mitochondrion  complete genome

 gi|51451218|gb|AY714042.1| Homo sapiens isolate R196 mitochondrion  complete genome

 gi|57903996|gb|AY882397.1| Homo sapiens isolate 19 U1b Tor133  mitochondrion  complete genome

 gi|395764485|gb|AY275527.2| Homo sapiens isolate 2812 mitochondrion  complete genome

 gi|33465925|gb|AY275529.1| Homo sapiens isolate 540 mitochondrion  complete genome gi|33465939|gb|AY275530.1| Homo sapiens isolate 1766 mitochondrion  complete genome

 gi|33465911|gb|AY275528.1| Homo sapiens isolate 415 mitochondrion  complete genome

 gi|57904276|gb|AY882417.1| Homo sapiens isolate 39 U6b Tor14  mitochondrion  complete genome

 gi|395764487|gb|AY275531.2| Homo sapiens isolate 2041 mitochondrion  complete genome

 gi|395764488|gb|AY275532.2| Homo sapiens isolate M3 mitochondrion  complete genome

 gi|33465995|gb|AY275534.1| Homo sapiens isolate 2579 mitochondrion  complete genome

 gi|636528825|gb|AY275535.2| Homo sapiens isolate 2032 mitochondrion  complete genome

 gi|57904262|gb|AY882416.1| Homo sapiens isolate 38 U6a Tor41  mitochondrion  complete genome

 gi|395764489|gb|AY275533.2| Homo sapiens isolate 236 mitochondrion  complete genome

 gi|636528826|gb|AY275536.3| Homo sapiens isolate 167 mitochondrion  complete genome

 gi|395764494|gb|AY275537.2| Homo sapiens isolate 183 mitochondrion  complete genome

 gi|51450672|gb|AY714003.1| Homo sapiens isolate C3 mitochondrion  complete genome

 gi|57904010|gb|AY882398.1| Homo sapiens isolate 20 U5a1 Tor13  mitochondrion  complete genome

 gi|57904024|gb|AY882399.1| Homo sapiens isolate 21 U5a1 Tor101  mitochondrion  complete genome

 gi|57904038|gb|AY882400.1| Homo sapiens isolate 22 U5b1b Tor123  mitochondrion  complete genome gi|57904080|gb|AY882403.1| Homo sapiens isolate 25 U5b1b Tor131  mitochondrion  complete genome

 gi|57904094|gb|AY882404.1| Homo sapiens isolate 26 U5b1b Tor130  mitochondrion  complete genome

 gi|57904108|gb|AY882405.1| Homo sapiens isolate 27 U5b1b Tor91  mitochondrion  complete genome

 gi|57904122|gb|AY882406.1| Homo sapiens isolate 28 U5b1b Tor129  mitochondrion  complete genome

 gi|57904052|gb|AY882401.1| Homo sapiens isolate 23 U5b1b Tor128  mitochondrion  complete genome

 gi|57904066|gb|AY882402.1| Homo sapiens isolate 24 U5b1b Tor85  mitochondrion  complete genome

 gi|57904136|gb|AY882407.1| Homo sapiens isolate 29 U5b1b Tor76  mitochondrion  complete genome

 gi|57904150|gb|AY882408.1| Homo sapiens isolate 30 U5b1b Tor118  mitochondrion  complete genome

 gi|57904164|gb|AY882409.1| Homo sapiens isolate 31 U5b1c Tor122  mitochondrion  complete genome

 gi|57904178|gb|AY882410.1| Homo sapiens isolate 32 U5b1c Tor121  mitochondrion  complete genome

 gi|57904192|gb|AY882411.1| Homo sapiens isolate 33 U5b1d Tor120  mitochondrion  complete genome

 gi|57904206|gb|AY882412.1| Homo sapiens isolate 34 U5b1d Tor119  mitochondrion  complete genome

 gi|57904220|gb|AY882413.1| Homo sapiens isolate 35 U5b2 Tor77  mitochondrion  complete genome

 gi|57904234|gb|AY882414.1| Homo sapiens isolate 36 U5b2 Tor132  mitochondrion  complete genome

 gi|57904248|gb|AY882415.1| Homo sapiens isolate 37 U5b2 Tor124  mitochondrion  complete genome

 gi|29690658|gb|AY195764.1| Homo sapiens haplotype E19U mitochondrion  complete genome

 gi|51451190|gb|AY714040.1| Homo sapiens isolate T115 mitochondrion  complete genome

 gi|57903786|gb|AY882382.1| Homo sapiens isolate 4 U2e Tor10  mitochondrion  complete genome

 gi|51451316|gb|AY714049.1| Homo sapiens isolate T108 mitochondrion  complete genome

 gi|51450994|gb|AY714026.1| Homo sapiens isolate R177 mitochondrion  complete genome

 gi|51450700|gb|AY714005.1| Homo sapiens isolate R94 mitochondrion  complete genome

 gi|57903772|gb|AY882381.1| Homo sapiens isolate 3 U2c Tor36  mitochondrion  complete genome

 gi|51450770|gb|AY714010.1| Homo sapiens isolate SW4 mitochondrion  complete genome

 gi|51450490|gb|AY713990.1| Homo sapiens isolate C53 mitochondrion  complete genome gi|57903744|gb|AY882379.1| Homo sapiens isolate 1 U2a Tor34  mitochondrion  complete genome

 gi|51450518|gb|AY713992.1| Homo sapiens isolate C57 mitochondrion  complete genome

 gi|51450910|gb|AY714020.1| Homo sapiens isolate S11 mitochondrion  complete genome

 gi|51450980|gb|AY714025.1| Homo sapiens isolate C27 mitochondrion  complete genome gi|51451008|gb|AY714027.1| Homo sapiens isolate R36 mitochondrion  complete genome

 gi|57903758|gb|AY882380.1| Homo sapiens isolate 2 U2b Tor35  mitochondrion  complete genome

 gi|48596173|gb|AY195765.2| Homo sapiens haplotype E13K mitochondrion  complete genome gi|40848699|gb|AY495250.1| Homo sapiens isolate K1-12 mitochondrion  complete genome gi|40848601|gb|AY495243.1| Homo sapiens isolate K1-05 mitochondrion  complete genome gi|40848713|gb|AY495251.1| Homo sapiens isolate K1-13 mitochondrion  complete genome

 gi|57903954|gb|AY882394.1| Homo sapiens isolate 16 K1c Tor106  mitochondrion  complete genome

 gi|40848629|gb|AY495245.1| Homo sapiens isolate K1-07 mitochondrion  complete genome

 gi|82792346|gb|DQ301797.1| Homo sapiens isolate D1520 mitochondrion  complete genome

 gi|51451246|gb|AY714044.1| Homo sapiens isolate C40 mitochondrion  complete genome

 gi|82792234|gb|DQ301789.1| Homo sapiens isolate D1123 mitochondrion  complete genome gi|82792416|gb|DQ301802.1| Homo sapiens isolate D1829 mitochondrion  complete genome gi|82792570|gb|DQ301813.1| Homo sapiens isolate D5677 mitochondrion  complete genome gi|82792318|gb|DQ301795.1| Homo sapiens isolate D1369 mitochondrion  complete genome gi|82792458|gb|DQ301805.1| Homo sapiens isolate D4262 mitochondrion  complete genome gi|82792430|gb|DQ301803.1| Homo sapiens isolate D4207 mitochondrion  complete genome

 gi|82792360|gb|DQ301798.1| Homo sapiens isolate D1606 mitochondrion  complete genome

 gi|40848797|gb|AY495257.1| Homo sapiens isolate K2-06 mitochondrion  complete genome

 gi|40848839|gb|AY495260.1| Homo sapiens isolate K3-01 mitochondrion  complete genome gi|82792388|gb|DQ301800.1| Homo sapiens isolate D1656 mitochondrion  complete genome

 gi|82792528|gb|DQ301810.1| Homo sapiens isolate D5257 mitochondrion  complete genome

 gi|40848755|gb|AY495254.1| Homo sapiens isolate K2-03 mitochondrion  complete genome

 gi|40848783|gb|AY495256.1| Homo sapiens isolate K2-05 mitochondrion  complete genome

 gi|40848811|gb|AY495258.1| Homo sapiens isolate K2-07 mitochondrion  complete genome

 gi|82792584|gb|DQ301814.1| Homo sapiens isolate D5908 mitochondrion  complete genome

 gi|40848895|gb|AY495264.1| Homo sapiens isolate K3-05 mitochondrion  complete genome

 gi|82792374|gb|DQ301799.1| Homo sapiens isolate D1626 mitochondrion  complete genome gi|82792402|gb|DQ301801.1| Homo sapiens isolate D1701 mitochondrion  complete genome

 gi|40848741|gb|AY495253.1| Homo sapiens isolate K2-02 mitochondrion  complete genome gi|40848769|gb|AY495255.1| Homo sapiens isolate K2-04 mitochondrion  complete genome gi|40848825|gb|AY495259.1| Homo sapiens isolate K2-08 mitochondrion  complete genome

 gi|40848853|gb|AY495261.1| Homo sapiens isolate K3-02 mitochondrion  complete genome gi|40848881|gb|AY495263.1| Homo sapiens isolate K3-04 mitochondrion  complete genome

 gi|40848867|gb|AY495262.1| Homo sapiens isolate K3-03 mitochondrion  complete genome

 gi|40848923|gb|AY495266.1| Homo sapiens isolate K3-07 mitochondrion  complete genome

 gi|40848909|gb|AY495265.1| Homo sapiens isolate K3-06 mitochondrion  complete genome

 gi|82792276|gb|DQ301792.1| Homo sapiens isolate D1311 mitochondrion  complete genome

 gi|82792514|gb|DQ301809.1| Homo sapiens isolate D5077 mitochondrion  complete genome

 gi|82792486|gb|DQ301807.1| Homo sapiens isolate D4757 mitochondrion  complete genome

 gi|82792612|gb|DQ301816.1| Homo sapiens isolate E1089 mitochondrion  complete genome

 gi|82792640|gb|DQ301818.1| Homo sapiens isolate E1365 mitochondrion  complete genome

 gi|82792626|gb|DQ301817.1| Homo sapiens isolate E1221 mitochondrion  complete genome

 gi|82792290|gb|DQ301793.1| Homo sapiens isolate D1320 mitochondrion  complete genome

 gi|57903968|gb|AY882395.1| Homo sapiens isolate 17 K1a Tor15  mitochondrion  complete genome gi|82792248|gb|DQ301790.1| Homo sapiens isolate D1139 mitochondrion  complete genome gi|82792500|gb|DQ301808.1| Homo sapiens isolate D4777 mitochondrion  complete genome

 gi|82792472|gb|DQ301806.1| Homo sapiens isolate D4481 mitochondrion  complete genome

 gi|82792262|gb|DQ301791.1| Homo sapiens isolate D1282 mitochondrion  complete genome

 gi|51450868|gb|AY714017.1| Homo sapiens isolate T150 mitochondrion  complete genome

 gi|40848545|gb|AY495239.1| Homo sapiens isolate K1-01 mitochondrion  complete genome gi|40848559|gb|AY495240.1| Homo sapiens isolate K1-02 mitochondrion  complete genome gi|40848615|gb|AY495244.1| Homo sapiens isolate K1-06 mitochondrion  complete genome gi|40848671|gb|AY495248.1| Homo sapiens isolate K1-10 mitochondrion  complete genome gi|40848573|gb|AY495241.1| Homo sapiens isolate K1-03 mitochondrion  complete genome gi|40848657|gb|AY495247.1| Homo sapiens isolate K1-09 mitochondrion  complete genome gi|40848587|gb|AY495242.1| Homo sapiens isolate K1-04 mitochondrion  complete genome

 gi|82792598|gb|DQ301815.1| Homo sapiens isolate D5939 mitochondrion  complete genome

 gi|40848643|gb|AY495246.1| Homo sapiens isolate K1-08 mitochondrion  complete genome
 gi|82792444|gb|DQ301804.1| Homo sapiens isolate D4232 mitochondrion  complete genome gi|82792556|gb|DQ301812.1| Homo sapiens isolate D5551 mitochondrion  complete genome

 gi|40848685|gb|AY495249.1| Homo sapiens isolate K1-11 mitochondrion  complete genome

 gi|40848727|gb|AY495252.1| Homo sapiens isolate K1-14 mitochondrion  complete genome

 gi|82792332|gb|DQ301796.1| Homo sapiens isolate D1435 mitochondrion  complete genome

 gi|74475826|gb|DQ200804.1| Homo sapiens isolate 24 mitochondrion  complete genome

 gi|57903940|gb|AY882393.1| Homo sapiens isolate 15 U8b Tor48  mitochondrion  complete genome

 gi|74475840|gb|DQ200805.1| Homo sapiens isolate 767 mitochondrion  complete genome

 gi|57903926|gb|AY882392.1| Homo sapiens isolate 14 U8a Tor47  mitochondrion  complete genome
 gi|74475812|gb|DQ200803.1| Homo sapiens isolate 47 mitochondrion  complete genome

 gi|74475798|gb|DQ200802.1| Homo sapiens isolate 30 mitochondrion  complete genome

 gi|74475784|gb|DQ200801.1| Homo sapiens isolate 1820 mitochondrion  complete genome

 gi|57903842|gb|AY882386.1| Homo sapiens isolate 8 U4a Tor60  mitochondrion  complete genome

 gi|57903856|gb|AY882387.1| Homo sapiens isolate 9 U4a Tor78  mitochondrion  complete genome

 gi|57903870|gb|AY882388.1| Homo sapiens isolate 10 U4b Tor12  mitochondrion  complete genome

 gi|57903884|gb|AY882389.1| Homo sapiens isolate 11 U9a Tor40  mitochondrion  complete genome

 gi|57903898|gb|AY882390.1| Homo sapiens isolate 12 U9b Tor58  mitochondrion  complete genome

 gi|51450686|gb|AY714004.1| Homo sapiens isolate C22 mitochondrion  complete genome

 gi|51450812|gb|AY714013.1| Homo sapiens isolate B19 mitochondrion  complete genome gi|51450826|gb|AY714014.1| Homo sapiens isolate B81 mitochondrion  complete genome gi|256311298|gb|AY882391.2| Homo sapiens isolate 13 U7 Tor37  mitochondrion  complete genome

 gi|51450952|gb|AY714023.1| Homo sapiens isolate C11 mitochondrion  complete genome

 gi|57903814|gb|AY882384.1| Homo sapiens isolate 6 U3b Tor11  mitochondrion  complete genome

 gi|441432863|gb|AY882385.2| Homo sapiens isolate 7 U3b Tor59  mitochondrion  complete genome gi|57903800|gb|AY882383.1| Homo sapiens isolate 5 U3a Tor86  mitochondrion  complete genome

 gi|51450756|gb|AY714009.1| Homo sapiens isolate A190 mitochondrion  complete genome

 gi|51450784|gb|AY714011.1| Homo sapiens isolate S4 mitochondrion  complete genome

 gi|51450798|gb|AY714012.1| Homo sapiens isolate A165 mitochondrion  complete genome

 gi|51451274|gb|AY714046.1| Homo sapiens isolate R62 mitochondrion  complete genome

 gi|51451302|gb|AY714048.1| Homo sapiens isolate R63 mitochondrion  complete genome

 gi|51450714|gb|AY714006.1| Homo sapiens isolate R43 mitochondrion  complete genome

 gi|75905878|gb|AY963580.2| Homo sapiens isolate 9 N21 Tor57  mitochondrion  complete genome

 gi|48596223|gb|AY195792.2| Homo sapiens haplotype As9Y mitochondrion  complete genome

 gi|32891159|gb|AY255138.1| Homo sapiens isolate XJ8426 mitochondrion  complete genome

 gi|78776087|gb|DQ272121.1| Homo sapiens isolate QJ185 mitochondrion  complete genome

 gi|48596154|gb|AY195756.2| Homo sapiens haplotype E23N1B mitochondrion  complete genome

 gi|82792304|gb|DQ301794.1| Homo sapiens isolate D1367 mitochondrion  complete genome gi|82792542|gb|DQ301811.1| Homo sapiens isolate D5547 mitochondrion  complete genome

 gi|48596177|gb|AY195769.2| Homo sapiens haplotype E22i mitochondrion  complete genome
 gi|51451204|gb|AY714041.1| Homo sapiens isolate C124 mitochondrion  complete genome

 gi|242308759|gb|AY963586.3| Homo sapiens isolate I3a Tor21  mitochondrion  complete genome

 gi|51450742|gb|AY714008.1| Homo sapiens isolate R132 mitochondrion  complete genome

 gi|48596176|gb|AY195768.2| Homo sapiens haplotype E15W mitochondrion  complete genome

 gi|51451232|gb|AY714043.1| Homo sapiens isolate C118 mitochondrion  complete genome

 gi|86450695|gb|DQ372887.1| Homo sapiens isolate TRI65 mitochondrion  complete genome
 gi|51450882|gb|AY714018.1| Homo sapiens isolate B59 mitochondrion  complete genome

 gi|48596195|gb|AY195779.2| Homo sapiens haplotype E14W mitochondrion  complete genome
 gi|51451176|gb|AY714039.1| Homo sapiens isolate B23 mitochondrion  complete genome

 gi|113706986|gb|DQ404440.3| Homo sapiens isolate AUR1 mitochondrion  complete genome

 gi|113706988|gb|DQ404441.3| Homo sapiens isolate AUD3 mitochondrion  complete genome

 gi|84682446|gb|DQ341066.1| Homo sapiens isolate 9 L3x Tor72  mitochondrion  complete genome

 gi|84682460|gb|DQ341067.1| Homo sapiens isolate 10 L3x Tor82  mitochondrion  complete genome

 gi|229470343|gb|DQ341068.2| Homo sapiens isolate 11 L3i Tor70  mitochondrion  complete genome

 gi|84682488|gb|DQ341069.1| Homo sapiens isolate 12 L3i Tor69  mitochondrion  complete genome gi|84682502|gb|DQ341070.1| Homo sapiens isolate 13 L3e5 Tor79  mitochondrion  complete genome

 gi|84682516|gb|DQ341071.1| Homo sapiens isolate 14 L3e Tor5  mitochondrion  complete genome

 gi|84682628|gb|DQ341079.1| Homo sapiens isolate 22 L3h Tor31  mitochondrion  complete genome gi|84682642|gb|DQ341080.1| Homo sapiens isolate 23 L3h Tor67  mitochondrion  complete genome

 gi|48596197|gb|AY195782.2| Homo sapiens haplotype A7NL mitochondrion  complete genome

 gi|84682530|gb|DQ341072.1| Homo sapiens isolate 15 L3d1 Tor4  mitochondrion  complete genome

 gi|48596205|gb|AY195784.2| Homo sapiens haplotype A8NL mitochondrion  complete genome

 gi|84682544|gb|DQ341073.1| Homo sapiens isolate 16 L3b Tor6  mitochondrion  complete genome gi|84682558|gb|DQ341074.1| Homo sapiens isolate 17 L3c Tor84  mitochondrion  complete genome
 gi|84682656|gb|DQ341081.1| Homo sapiens isolate 24 L3a Tor73  mitochondrion  complete genome

 gi|84682418|gb|DQ341064.1| Homo sapiens isolate 7 L7 Tor66  mitochondrion  complete genome

 gi|84682432|gb|DQ341065.1| Homo sapiens isolate 8 L4 Tor71  mitochondrion  complete genome
 gi|85541074|gb|DQ341063.1| Homo sapiens isolate 6 L6 Tor39  mitochondrion  complete genome

 gi|84682362|gb|DQ341060.1| Homo sapiens isolate 3 L5 Tor74  mitochondrion  complete genome

 gi|84682376|gb|DQ341061.1| Homo sapiens isolate 4 L5 Tor68  mitochondrion  complete genome
 gi|48596203|gb|AY195783.2| Homo sapiens haplotype A4L1B2 mitochondrion  complete genome

 gi|48596217|gb|AY195789.2| Homo sapiens haplotype A3L1B1 mitochondrion  complete genome

 gi|84682348|gb|DQ341059.1| Homo sapiens isolate 2 L1c2a Tor7  mitochondrion  complete genome

Eve

Three 
nodes

Fig. 12.
Whole genome alignment and resultant phylogenetic tree of 828 human individuals plus the previously derived 

nodes which happened to be the node containing the most individuals in the dataset.
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Figs. 1–24, 49–51). Twenty-four of the families all 

species radiated with roughly equal branch lengths 
(Supplemental Figs. 1, 3–12, 14, 16–24). Only Ursidae 
(Supplemental Fig. 2), Gruidae (Supplemental 
Fig. 13), and Crocodylidae (Supplemental Fig. 15) 
had radiation style trees resembling the human 
mitochondrial DNA tree. These three animal 

most species in the family had roughly equivalent 
branch lengths, but from which a few species had 
unusually long branch lengths. Thus, for most of the 
families, rooting the tree on the midpoint seemed 
a reasonable approximation of the start of the 
speciation process. 

Furthermore, mitochondrial DNA sequence 

indicated that, between some families, relatively few 
DNA differences existed (Fig. 13). If large numbers 
of DNA differences had separated families, this fact 

would have raised concerns that mutations had been 
ongoing long before speciation commenced. Since 
relatively few DNA differences separated unrelated 
(i.e., separately created) families, the assumption 
that the midpoint approximated the start of the 
speciation process gained further credibility.

rooted the trees on the midpoint, and assumed that 
speciation began at the midpoint (Supplemental Figs. 

year immediately post-Creation (e.g., 6000 years 

until late post-Creation or late post-Flood, this 
methodology would miss this fact. However, since 
rapid speciation early post-Flood was the prevailing 
hypothesis, I effectively set up this experiment to be 
overly generous towards the early speciation view. 

Canis latrans
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Herpestes javanicus
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 Martes americana voucher ROM11
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Fig. 13. Mitochondrial DNA differences among species within Carnivora. Whole genome alignment and resultant 
DNA differences depicted as branch lengths on a tree. Species within a family were highlighted with different colors. 

separating the roots of different families were short relative to the DNA differences separating the species within a 
family.
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I also made a third assumption in these genetic 
analyses, namely, that the branch point between 
two species represented the actual speciation event. 
This hypothesis was partially tested by aligning the 
sequences from multiple individuals within each 
species. For the families Bovidae, Ursidae, and 
Hominidae, species existed for which sequences 
from multiple individuals were present in the 
NCBI databases. If branch points on the tree did 
not represent speciation events, then this analysis 
should have resulted in crossing and mixing up of 
the branches from multiple individuals in separate 
species. In other words, there should have been 
no obvious single branch point separating all the 
individuals within a species from all the other 
individuals in a separate species.

After aligning sequences from individuals within 
each of these families and then drawing trees 

single branch point still separated species from one 
another. No overlapping branches were found, and 
no branches from separate species crossed (Figs. 
14–16). Thus, the assumption that the branch point 
represents a speciation event seemed reasonable.

of the relationships, the branch lengths appeared 

history, the American bison (Bison bison) and African 
buffalo (Syncerus caffer) appear to have undergone 

population estimates of millions to tens of millions 
of individuals worldwide, the American bison was 
hunted to less than 1000 individuals globally in 

numbers have recovered to only ~530,000 individuals 
(Gates and Aune 2008). By contrast, the African 

500,000 (IUCN SSC Antelope Specialist Group 2008). 
Since the mitochondrial DNA branch lengths 

(Futuyma 2009), population genetics would predict 
a shorter coalescence time (branch length) for the 
American bison population than for the African 
buffalo population. In fact, actual branch lengths 
matched this prediction (Fig. 17). Hence, branch 
lengths appeared to record real historical events 
within species.

Given this precedence within species, it seemed 
plausible to assume that branch points represented or 
at least approximated real speciation events between 
species. Though multiple individuals may have been 

part of the speciation event itself, and though the 
actual event may have been slightly before or after 
the time represented by the branch point, using the 
branch point as a surrogate for the time of speciation 

Speciation hypotheses 
With these methodological parameters in mind, I 

derived several expectations in light of the prevailing 
YE hypotheses on the timing of speciation. These 
hypotheses and their predictions can be divided into 
four general categories. As Wise (1994) and Wood 
(2002, 2003) have previously speculated, speciation 
post-Flood and even post-Creation may have been 
early and rapid followed by a long period of little 

Alternatively, it is possible that this timeline was 

Fig. 18). As Wise (1994) and Wood (2002, 2003) 
have pointed out previously, this hypothesis seems 

speciation events. Nonetheless, it was worth testing. 
Finally, speciation may have occurred at a constant 

speciation hypothesis
I tested these four hypotheses by aligning the 

mitochondrial DNA sequences for species within a 

midpoint, as per the assumptions I articulated above. 
I then used the branch lengths between each branch 
point as a surrogate for time between speciation 
events and created a timeline from these DNA 
differences.

These analyses were limited by the fact that not 
all species within a family were represented by 
DNA sequences in the curated public databases. For 
example, among the most speciose mammal families 
(e.g., those with 60 or more species), only the family 

representation (Table 2).
Nevertheless, in the family Bovidae, the pattern 

2 = 0.997) with the 
linear speciation hypothesis (Fig. 19). In addition, 

represented in these data, eventual publication 
of the mitochondrial DNA sequences from the 
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Fig. 14. Topology-only tree of Bovinae individuals and species. Whole genome alignment and resultant branching 

differences but did depict branching relationships. As was apparent upon visual inspection, neither the Syncerus 
caffer individuals nor the Bison bison individuals ever had branches intermixed with branches from other species, 
consistent with the hypothesis that branch points correspond to actual speciation events. 
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Fig. 15. Topology-only tree of Pan individuals and species. Whole genome alignment and resultant branching 

differences but did depict branching relationships. As was apparent upon visual inspection, none of the individuals 
within Pan paniscus and Pan troglodytes ever had branches intermixed with branches from the other species, 
consistent with the hypothesis that branch points correspond to actual speciation events. 
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Fig. 16. Topology-only tree of Ursus individuals and species. Whole genome alignment and resultant branching 

differences but did depict branching relationships. As was apparent upon visual inspection, neither the Ursus arctos 
individuals nor the Ursus maritimus individuals ever had branches intermixed with branches from other species, 
consistent with the hypothesis that branch points correspond to actual speciation events. Though the Ursus arctos 
individuals appeared to stem from two different populations, the individuals from Ursus maritimus were still clearly 
distinct from Ursus arctos individuals.
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Fig. 17. Different coalescent times within Bovinae. Whole genome alignment and resultant DNA differences depicted 
as branch lengths on a tree. To magnify the differences in branch lengths among Syncerus caffer and Bison bison 
individuals, the middle section of the tree was omitted, as indicated by the dashed lines. Upon visual inspection, it 
was apparent that the branch lengths connecting the most distant Syncerus caffer individuals were longer than the 
branch lengths connecting the most distant Bison bison individuals. Hence, the coalescence time for Syncerus caffer 
was longer than for Bison bison
by Bison bison. 
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Fig. 18 (left). Hypotheses on the timing of speciation 
within biblical parameters. Using the family Muridae 
(712 total species) as an example of a speciose family, 
contrasting hypotheses on the timing of speciation 

hypothesis represented one in which speciation 

speciation happened in several short bursts over time. 

speciation rate has been constant with time, while the 

rapidly increased to high levels.
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change the match between linear speciation 
hypothesis and the actual speciation timeline.

I also assessed several mammal families whose 
species were completely represented in the NCBI 

fewer species were completely represented, under the 
assumptions I made for these analyses, tree-drawing 

statistically uninformative. For mammals, this 

hypothesis (Figs. 20–22). 

the Bovidae family, this result may have been an 
artifact of small number statistics. Since Ursidae, 

deviations from the mean would have had higher 
statistical consequence than deviations in a family 
with over 100 data points. Furthermore, since 
the radiation style tree for Ursidae suggested the 
possibility of different rates of change for at least two 
of the Ursid species (Supplemental Fig. 2), the lower 
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R2 = 0.9973

Fig. 19. Speciation rate within the family Bovidae. 
Whole genome alignments for extant, wild (non-
domestic) species in the family Bovidae were performed. 
A phylogenetic tree was created from which branch 
lengths between branch points were extracted, converted 

to a linear function, which was represented by the thin 

via linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.

Table 2.

Order Family Species#
Species with 

mtDNA sequences in
NCBI RefSeq

% Species with 
mtDNA sequence 

represented
Rodentia Muridae 716 32 4

Rodentia Cricetidae 699 11 2

Chiroptera Vespertilionidae 421 10 2

Eulipotyphla Soricidae 376 6 2

Rodentia Sciuridae 279 6 2

Chiroptera Pteropodidae 187 4 2

Chiroptera Phyllostomidae 174 12 7

Cetartiodactyla Bovidae 141 106 75

Primates Cercopithecidae 125 56 45

Chiroptera Molossidae 100 0 0

Didelphimorphia Didelphidae 99 4 4

Rodentia Echimyidae 90 2 2

Chiroptera Hipposideridae 84 0 0

Chiroptera Rhinolophidae 74 7 9

Dasyuromorphia Dasyuridae 72 5 7

Diprotodontia Macropodidae 67 3 4

Lagomorpha Leporidae 62 7 11

Rodentia Heteromyidae 62 0 0

Rodentia Ctenomyidae 60 2 3

Rodentia Nesomyidae 60 0 0
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of non-identical mutation rates across species within 
the Ursidae family. Hence, these data from three on-

same result: A linear timeline of speciation.

For mammal families with incomplete species 

higher representation than Bovidae, a match 
between the linear speciation rate hypothesis and 
the data was the rule. Equidae (Fig. 23), Hominidae 

hypothesis well. 
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Fig. 20. Speciation rate within the family Ursidae. 
Whole genome alignments for extant species in the 
family Ursidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 21.
Whole genome alignments for extant species in the 

tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 
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Fig. 22. Speciation rate within the family 
Balaenopteridae. Whole genome alignments for extant 
species in the family Balaenopteridae were performed. 
A phylogenetic tree was created from which branch 
lengths between branch points were extracted, converted 

speciation within the family. The results were a fairly 

were derived via linear regression of the raw data in 

within the family were depicted in the upper left and 
right corners, respectively.
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Fig. 23. Speciation rate within the family Equidae. 
Whole genome alignments for extant, wild (non-
domestic) species in the family Equidae were performed. 
A phylogenetic tree was created from which branch 
lengths between branch points were extracted, converted 

to a linear function, which was represented by the thin 

via linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.
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Even mammal families that were moderately to 
intensely speciose but less well-represented with 
mitochondrial DNA sequences displayed a linear 

 

of a burst of speciation immediately post-Flood or post-

since the Flood or since Creation (Figs. 19–30).

Fig. 24. Speciation rate within the family Hominidae. 
Whole genome alignments for extant species in the 
family Hominidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 25. Speciation rate within the family Phocidae. 
Whole genome alignments for extant species in the 
family Phocidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 26. Speciation rate within the family Cervidae. 
Whole genome alignments for extant species in the 
family Cervidae were performed. A phylogenetic tree was 
created from which branch lengths between branch points 
were extracted, converted to years, and used to plot the 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 27.  Speciation rate within the family Cercopithecidae.
Whole genome alignments for extant species in the family 
Cercopithecidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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This linear pattern was true across vertebrate 
classes. Within Aves, both well-represented 

representation, Fig. 32) families generally matched 
the linear speciation rate hypothesis. As per the 

visual rate homogeneity test (Supplemental Fig. 
13), lineages within Gruidae may have undergone 
unequal rates of mutation change. Hence, if this 
unequal mutation rate hypothesis was indeed true, 

have been even higher had mutation rates been 
identical across lineages.
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Fig. 28. Speciation rate within the family Mustelidae.
Whole genome alignments for extant species in the 
family Mustelidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 29. Speciation rate within the family Delphinidae. 
Whole genome alignments for extant species in the 
family Delphinidae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.

Fig. 30. Speciation rate within the family Muridae. 
Whole genome alignments for extant species in the 
family Muridae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.
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Fig. 31. Speciation rate within the family Gruidae. 
Whole genome alignments for extant species in the 
family Gruidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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In addition, some of the best-represented reptile 
 

representation, Fig. 34) families also matched the 
linear speciation hypothesis. Again, the visual rate 
homogeneity test for Crocodylidae suggested that 
mutation rates were unequal across lineages within 

the family (Supplemental Fig. 15). Thus, if this 
unequal mutation rate hypothesis was indeed true, 

have been even higher had rates been identical 

matched the linear speciation rate hypothesis.

representation by DNA sequences was high 

of speciation were the rule (Figs. 35–37). Even the 
most species-rich family across all vertebrate classes 
(Cyprinidae, 2935 extant species) showed a strongly 

species represented by mitochondrial DNA sequences 

status, species representation, and mammalian order, 
and they were also independent of vertebrate class.

Among arthropods, linear rates described crustacean 
 

and it deviated from linear speciation hypothesis, 
showing evidence in favor of the late speciation 
hypothesis instead (Fig. 42). However, since two-
thirds of the species in this analysis came from 
only one of the 14 Acroporidae genera, the match 
between the data and the late speciation hypothesis 
may have been an artifact of species representation. 
Hence, linear speciation rates described the timing 
of speciation within families almost entirely 
independent of the biology of each family.
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Fig. 32. Speciation rate within the family Phasianidae.
Whole genome alignments for extant species in the 
family Phasianidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 33. Speciation rate within the family Crocodylidae. 
Whole genome alignments for extant species in the 
family Crocodylidae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.
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Fig. 34. Speciation rate within the family Hynobiidae. 
Whole genome alignments for extant species in the family 
Hynobiidae were performed. A phylogenetic tree was 
created from which branch lengths between branch points 
were extracted, converted to years, and used to plot the 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Even the families that were mentioned in 
Scripture and which were previously used to argue 
(Wood 2002) for the early episode hypothesis showed 
speciation patterns that did not contradict the linear 
speciation rate hypothesis. As described above, the 
family Equidae showed a linear speciation rate (Fig. 
23), and the wild horse (Equus przewalskii) branched 

Fig. 29). The family Camelidae had only three 
species total, preventing a strict graph on the timing 

of speciation from being drawn, yet the wild camel 
(Camelus ferus) branched immediately from the 
putative root and did not show a nested hierarchical 
pattern with the remaining species or any other 
such pattern suggestive of a later speciation event 
(Supplemental Fig. 49). 

In families Felidae and Canidae, species 
representation was low, but the data still correlated 
well with the linear speciation rate hypothesis (Figs. 

Fig. 35. Speciation rate within the family Anguillidae. 
Whole genome alignments for extant species in the 
family Anguillidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

within the family was depicted in the upper right corner.

Years Post-Flood

Anguillidae (Chordata,
Actinopterytii, Anguilliformes):

Speciation Rate

17 of 19
species
(89%)

y = 0.003x + 3.9695
R2 = 0.8904To

ta
l S

pe
ci

es

25

15

10

20

0

5

0 1000 2000 40003000 5000 6000

Fig. 36. Speciation rate within the family Scombridae. 
Whole genome alignments for extant species in the 
family Scombridae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

in the upper right corner.
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Fig. 37. Speciation rate within the family Tetraodontidae. 
Whole genome alignments for extant species in the 
family Tetraodontidae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

in the upper right corner.
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Fig. 38. Speciation rate within the family Cyprinidae.
Whole genome alignments for extant species in the 
family Cyprinidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

within the family was depicted in the upper right corner.
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43–44).Though the wolf and lion appeared to become 
separate species within their respective families 
midway through or late in the post-Flood period, 
their lineages branched off early. Furthermore, it’s 
unclear whether the modern wolf and lion species 
are the same species to which Scripture refers in the 
passages used to argue for an early speciation event 

(Wood 2002). Also, in general for every speciation 
event, a new species splits off from a parent species, 
and the identity of the parental species in the wolf 

account of the natural history of these families.
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Fig. 39. Speciation rate within the family Parastacidae. 
Whole genome alignments for extant species in the 
family Parastacidae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.

Fig. 40. Speciation rate within the family Acrididae. 
Whole genome alignments for extant species in the 
family Acrididae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 41. Speciation rate within the family Nymphalidae. 
Whole genome alignments for extant species in the 
family Nymphalidae were performed. A phylogenetic 
tree was created from which branch lengths between 
branch points were extracted, converted to years, and 

line and the equation, both of which were derived via 
linear regression of the raw data in Microsoft Excel. 

were depicted in the upper left and right corners, 
respectively.

Fig. 42. Speciation rate within the family Acroporidae. 
Whole genome alignments for extant species in the 
family Acroporidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Since linear speciation rates were found across 

equation: The absolute rate of speciation for extant 
species within a family is the division of the number 

per-year rate of speciation is the number of extant 

species within the family divided by ~4350 years. For 

number of extant species within the family divided 
by ~6000 years (Fig. 45A–B). 

This was well illustrated in the mammalian 
families for whom all of their species were represented 
in the mitochondrial DNA databases. For example, 
in Balaenopteridae, the predicted rate of speciation 

from linear regression of the mitochondrial DNA 
data (Fig. 22). Also, in the family Ursidae, the 

matched the slope derived from linear regression of 

the slope derived from linear regression of the 

the timing of speciation only for extant species. The 
total number of species within a family at any point 
in time includes both the still-extant species that had 

Fig. 43. Speciation rate within the family Felidae. Whole 
genome alignments for extant species in the family 
Felidae were performed. A phylogenetic tree was created 
from which branch lengths between branch points were 
extracted, converted to years, and used to plot the 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 44. Speciation rate within the family Canidae. 
Whole genome alignments for extant species in the 
family Canidae were performed. A phylogenetic tree 
was created from which branch lengths between branch 
points were extracted, converted to years, and used to plot 

both of which were derived via linear regression of the 

and species within the family were depicted in the upper 
left and right corners, respectively.
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Fig. 45. Implications of the discovery of linear speciation 
rates within diverse families. A. If speciation rates 

the rate of speciation can be predicted by dividing the 
number of extant species by the date of the Flood (~4350 
years ago). B.

can be predicted by dividing the number of extant 
species by the date of Creation (~6000 years ago). C. 

that the speciation rate per family is constant with 
time. However, since speciation is happening, the total 
number of species within the family is increasing with 
time. A constant numerator divided by an increasing 
denominator results in a quotient that is decreasing 
with time. Hence, if speciation rates are linear for all 

per species is declining. 
D.
the graphs imply that more speciation is yet to come—
that speciation is still on-going and has not ceased 
permanently.
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formed then, plus now-extinct species which were 

no predictions for the total number of species within 
a family at any point in time because the equations 
do not include data on now-extinct species.

A second implication of these results was that the 
per species speciation rates were (and are) declining. 
Since the speciation rates per family were constant 
with time but the number of species within each 
family was increasing with time, this effectively 
meant that speciation rate of each species was 
becoming smaller with the passage of time (Fig. 45C).

A third implication of these results was that high 
rates of speciation continue to this day (Fig. 45D). 
In contrast, the evolutionary model postulates that 
individual species arise over hundreds of thousands 
to millions of years (Futuyma 2009), implying that 
speciation is a rarely seen event. The equations in 
Fig. 45A–B estimate ongoing speciation at much 
faster rates. For example, within Bovidae, the 
predicted rate of speciation is 0.03 species per year 

Currently, the African buffalo (Syncerus 
caffer) contains several subspecies, including the 
morphologically distinct African forest buffalo 
(Syncerus caffer nanus). If these subspecies become 
geographically (and, therefore, reproductively) 

separate species, consistent with the conclusion that 
speciation is ongoing and observable.

As another example, the family Hominidae has a 

or one new species every 725 years. Within the 
Pan troglodytes), 

several subspecies exist, a fact which is immediately 
visible in genetics (Fig. 46, derived from the same data 
as Fig. 15 but rooted on the midpoint and without 
selecting the topology-only option in MEGA4). If the 

of these Pan troglodytes subpopulations continues, 
and if interbreeding among these subspecies fails to 
occur, new Pan species may soon emerge.

Discussion
 

The results of this study highlight the unique 
advantages of genetics over the fossil record on the 
question of the timing of speciation. Since only a few 
select time points are represented in the fossil record, 
the history that can be inferred from paleontology is 
rather imprecise temporally. (This is true regardless 

genetics theoretically offers many more time points. 

utility of paleontology. In contrast, DNA sequence 
information can be obtained freely in theory from 

in the relative timing of speciation for extant species. 
Observing the past through this window revealed 

abundant evidence consistent with the linear 
speciation rate hypothesis. Nearly every family that 
was studied matched the expectations of the constant 
rate model. Although the entire dataset represented 

Fig. 46. Possible evidence for ongoing speciation within Pan. The same raw alignment data from which the trees 
in Fig. 15 were derived was used to create a mid-point rooted phylogenetic tree of members of the genus Pan. 
As was depicted in Fig. 15, the individuals within Pan paniscus species clearly segregated as a group from the 
individuals within the Pan troglodytes species. Within the latter, several subgroups were visible, corresponding to 
Pan troglodytes subspecies, and these subgroups may be the precursors to new Pan species.
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rate results were true regardless of the classes and 
phyla to which these families belonged, suggesting 
that constant speciation rates would generally be 
found across most taxa. Furthermore, the results 
were so consistent that they led to a predictive model 
for the timing of speciation (Fig. 45A–B), one that can 
be tested with addition families in the future.

These results can be reconciled with the previous 
data used to argue for an early episode of speciation. 

alluded to in Scripture (Wood 2002) did not contradict 
the linear speciation rate hypothesis. Also, even 

high number of species formed then may not have 
been the ancestors of modern extant species, which 
would alleviate any apparent contradiction between 

appears to be degraded, or it may represent a group 
of individuals with unique and unusually high 
mutation rates (Fig. 11C). Neither of these scenarios 
undermine the foundational assumption of this 
study—that rates of mitochondrial DNA change in 
extant species have been constant through time.

Nevertheless, this assumption of constant 

in the future by one of at least two different methods. 
If ancient DNA could be demonstrated to be reliable, 
and if it could be demonstrated that these fossil DNA 
sequences found immediately post-Flood were too 
genetically diverse to be explained by a constant rate 

of the present study would be in error. 

the assumption of a constant rate of mutation could be 
tested with living species. By measuring the mutation 

genetic diversity predictions from these rates under 

then comparing the predictions to actual diversity, 
the utility of the constant rate assumption could be 
evaluated. If the predictions from these additional 
rates underestimate actual diversity within the 
family, then the assumption of constant rates would 

were higher in the past, as per Wood’s conclusions 
(2012, 2013b). This result would also imply that early 
episode (Fig. 18) speciation hypothesis was correct. 
Instead, if the predictions overestimated actual 
diversity in the family, then it would appear that 
either mutation rates were slower in the past or that 
species within a family coalesced sooner than 4350 

families). This result would imply that a version of 
the late hypothesis (Fig. 18) was correct.

do indeed exist, the results of this study found no 
evidence in support of the early episode hypothesis 
(Fig. 18) of Wise (1994) and Wood (2002, 2003). The 
fact that most vertebrate families are not highly 
speciose (Figs. 1–6) and that fact that nearly every 
family showed a linear rate of species accumulation 
regardless of within-family species richness (Figs. 
19–44) together argued against the hypothesis that 
modern species arose immediately post-Flood in a 
burst of speciation. 

the sense of the early episode hypothesis (Fig. 18), 
but speciation does seem to happen much faster than 
the evolutionary community has maintained.

All of these results are dependent upon the 

results would be called into question. For highly 
speciose families, the possibility is especially real 

not be equivalent to 

Nevertheless, the preliminary results in this 
study suggest that the conclusion of linear rates of 
speciation would remain intact. For example, in 
several of the speciose families, mitochondrial DNA 
representation was poor. Hence, these groups could 

linear speciation rates were still seen (e.g., Figs. 30, 
38, 40–41), suggesting that linear rates of speciation 

Remaining questions on the timing of speciation 
Several aspects of the timing of speciation were 

inaccessible by the methods employed in this study. 
First, because I assumed that the start of the 
speciation process was approximated by the midpoint 

about the absolute timing of speciation. It is entirely 

sooner than 4350 years ago and that species within 

If these hypotheses are true, a linear pattern 
would still be present within these families, but only 
for the length of time that speciation was happening. 
In a sense, this result would be a fusion of the linear 
and late hypotheses. Under this scenario, speciation 
events would begin late post-Flood, but, once they 
began, they would follow a linear pattern. Hence, 
anchoring the linear patterns discovered in this 
study to absolute dates on the YE timescale will 
require further study. 
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Evaluation might begin by comparing the 
predictions from the equations in Fig. 45A–B to 
recorded history. In addition, mitochondrial DNA 
mutation rates could be measured for several species 
within each family to see if the predictions from 
these rates overestimate or accurately describe the 
genetic diversity within the family. If the predictions 
matched the actual diversity, this would support the 
assumptions made in this study and the timestamps 
assigned to the various speciation events.

Despite these concerns, the preliminary results 

timelines I depicted (Figs. 19–44) were not too far 
off the absolute timescale. For example, among the 

separated from one another by few DNA differences. 
In contrast, species within families were sometimes 
separated by large DNA differences. Had speciation 
commenced late post-Flood, then I would have 
expected the DNA differences between species to 
have been less than the DNA differences between 
families. 

Second, the timing of speciation for extinct families 
is also inaccessible by this study. Since I limited my 
analyses to extant species, these results say nothing 

not survive to today. 
Third, these results are silent on the question 

of the rates of speciation for now-extinct species in 
still-extant families. Presumably, if DNA data were 
available for these extinct species, the fact of linear 

values for the rates of speciation would need to be 

DNA sequence representation (Figs. 30, 38, 40–41) 
are already a model of this scenario. I anticipate that 
the addition of more DNA sequences from extant 
species to these family calculations will simply 
change the slope and not the linear structure of the 
graph.

Finally, these studies do not directly address 
why some families became very speciose and others 

seems to approximate the species per family in a 
variety of taxonomic groups, but the reason why this 

 
The results of this study put several of the 

prevailing hypotheses on the mechanism of speciation 
in a new light. The equations in Fig. 45A–B indicate 
that the rate of speciation is predictable from the 
total number of species within a family. Since species 
within a family occupy diverse environments, it would 
appear that the rate of speciation within a family is 
not predictable from the type of environments that 

the family may have encountered during its history. 
This suggests that speciation may not be a process 
of directed mutation in response to environmental 
challenges. 

Furthermore, since the rate of speciation appears 
to be constant, rather than an exponential function 
which eventually trails off with time, the need for 
creative mechanisms of speciation appears to be 
obviated. Since some of the most inventive mechanistic 
hypotheses were created to explain the early episode 
hypothesis of speciation (Fig. 18), the fact of linear 
speciation rates implies that novel proposals are 

that transposon-mediated mechanisms (e.g., Terborg 

needed for speciation. 
Nevertheless, the fact of chromosomal differences 

among species may still necessitate unique proposals 
on genetic change (Wood 2013a).

By contrast, the linear speciation rate results 
in the present study implicate a mechanism that 
has existed in the creationist community for 

nuclear DNA compartment. This genetic diversity 

generation, and the process of recombination 
ultimately leads to morphologically distinct 
individuals that form populations which we would 

Though the focus in this study was mitochondrial 
DNA, the principles about the timing of speciation 
that were inferred from these data were consistent 

fractionation hypothesis for nuclear DNA. First, 
under this hypothesis, fractionating the originally 

the potential for speciation within each new species. 
Since each new species would contain a fraction of the 
original nuclear allele pool, the number of available 
nuclear alleles for recombination would become 
smaller with each new speciation event. This would 
effectively lower the speciation potential with each 
new speciation event, consistent with the results of 
this study that indicate that the rate of speciation per 
species is declining (Fig. 45C). 

fractionation hypothesis, speciation would be ongoing. 
Since it’s not driven by any unique environmental 
trigger or by one-time historical events, new species 
could form, theoretically, at any time so long as 

produce new varieties. The results of this study 
suggest that speciation is ongoing (Fig. 45D). 
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Third, independent of the results of this study, 
precise accounting for the current set of alleles in 
the human population nearly requires an initially 

were as well. 

also a feasible explanation. Population genetics 
prevent 

among individuals occurs randomly and without 

different isolated subpopulations (migration and gene 

mutation does not occur, and if natural selection does 

and no change in the frequency of alleles in the 
population will occur. Obviously, these conditions do 
not exist anywhere on earth, which means that all 

time as they reproduce. In other words, if God created 

individuals, then He virtually ensured that genetic 

occur.

parameters that Wise (1994) outlined previously. 
Drift and fractionation are ultimately intrinsic 
mechanisms of speciation, but they follow from the 
linear speciation rate hypothesis rather than the 
rapid speciation hypothesis that Wise articulated.

a diversity of families, this result suggests that the 
mechanism driving speciation is consistent across a 
diversity of families. Hence, at the present, genetic 

explanation for the process of speciation worldwide. 

remains unanswered, and further research is needed 

and to explore additional lines of evidence that may 

genetic drift hypothesis.

Conclusion
Mitochondrial DNA patterns within families 

indicate that the speciation process which has led to 
the origin of extant species has occurred at constant 

to diverse taxa, suggesting that it was independent 

Furthermore, it suggested that the mechanism of 

that this mechanism might be genetic drift of created 
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the family Bovidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Ursidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

alignments were performed, and the resultant alignment 

family Balaenopteridae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Equidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Hominidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Phocidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Cervidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

family Cercopithecidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

 
the family Mustelidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Delphinidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Muridae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Gruidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Phasianidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

the family Crocodylidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Hynobiidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Anguillidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Scombridae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

family Tetraodontidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Cyprinidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Parastacidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

the family Acrididae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

family Nymphalidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

the family Acroporidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

genus-species names, the NCBI accession information was 
displayed for each species.

tree of species within the family Bovidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

tree of species within the family Ursidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 
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DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

species within the family Balaenopteridae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

tree of species within the family Equidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Hominidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Phocidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Cervidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Cercopithecidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Mustelidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Delphinidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Muridae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

tree of species within the family Gruidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Phasianidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

of species within the family Crocodylidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Hynobiidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Anguillidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Scombridae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

of species within the family Tetraodontidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Cyprinidae. Mitochondrial 
DNA whole genome alignments were performed, and the 
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mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

of species within the family Parastacidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

of species within the family Acrididae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

of species within the family Nymphalidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

of species within the family Acroporidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 

NCBI accession information was displayed for each species.

the family Camelidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Felidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

the family Canidae. Mitochondrial DNA whole genome 
alignments were performed, and the resultant alignment 

tree of species within the family Felidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 

tree of species within the family Canidae. Mitochondrial 
DNA whole genome alignments were performed, and the 

mid-point rooted tree with branch lengths displayed. The 
mid-point root was assumed to represent the start of the 
speciation process. 
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