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Abstract
Some recent creationists have attempted to address the light travel time problem indirectly with an implied 

appeal to a small universe. If the universe is no more than a few thousand light years in size, then the light travel 
time is eliminated almost by definition. Here I survey the methods used for establishing astronomical distances. 
The only direct method of measuring stellar distances generally results in reliably measured distances of less 
than a thousand light years. However, that limit likely soon will exceed 6000 light years. Indirect methods 
already produce distances that are thousands, millions, and even billions of light years. The indirect distance 
determination methods ultimately are tied to direct determinations of distance, and they are reasonably 
consistent with one another. Furthermore the indirect methods are supported by well-understood physics. It is 
extremely unlikely that these methods are so wrong that the light travel time problem can be answered with 
a small universe.
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Introduction
The recent creation model is that the earth and the 

rest of the universe were created supernaturally in 
six normal days a few thousand years ago and that 
the Flood in Noah’s time was global and universal. 
This is contrary to what is held by most scientists, 
who believe that the earth and universe are billions 
of years old. The size of the universe is a challenge 
for the recent creation model. Though they appear 
related, the large size of the universe and deep time 
are distinctly different concepts. If the universe is 
only a few thousand years old, then it would seem 
that today we could see objects out to a distance of at 
most a few thousand light years. Astronomers think 
that many objects are millions or even billions of light 
years away. To many people, the fact that we can 
see objects at such distances is strong evidence that 
the universe is indeed billions of years old. Recent 
creationists have called this “the light travel time 
problem.”

As I have previously argued, the light travel time 
problem often is improperly formulated (Faulkner 
2013). Most discussions of this issue ask how we can 
see astronomical objects more than 6000 light years 
away, when in reality anything more than two light 
days away is a problem. The nearest star is a little more 
than four light years distant, yet Adam needed to see 
stars only two days after their creation. Ultimately, 
appealing to a universe that is only a few light years 
in size may suffice to explain how we can see stars 
today, but it fails to explain how Adam would have 
seen any stars at all.1 Any solution for the light travel 
time problem must account for Adam seeing the stars 
as evening fell at the conclusion of Day 6.

Creationists have responded to the light travel time 
problem with several possible solutions. For instance, 
in my recent paper (Faulkner 2013) I presented the 
Dasha’ solution.2 Setterfield (1989) suggested that 
the speed of light was very great in the beginning 
but rapidly decayed, allowing the light from the 
most distant parts of the universe to arrive as early 
as the end of the Creation Week. Humphreys (1994) 
has suggested that the universe began with a white 
hole rather than a big bang. In this model, relativistic 
effects caused billions of years to pass in much of 
the universe, but only a few thousand years on and 
near the earth. More recently, Hartnett (2008 and 
references therein) also has used general relativity, 
but with an alternate metric. Another recent solution 
is the Anisotropic Synchrony Convention of Lisle 
(2010). One of the most popular answers is to posit 
that God created a fully functioning universe, with 
light created in transit (Akridge 1979, DeYoung 
2010). Each of these suggested resolutions have their 
good and bad points, a topic that I will not discuss 
further here.

Others have questioned whether the distances in 
astronomy really are as great as generally thought 
(for instance, see Armstrong [1973], Niessen [1983]). 
They point out that the only direct method of finding 
distances in astronomy may be applicable for distances 
of no more than a few hundred light years. All 
other methods that give much greater distances are 
indirect and thus are subject to many assumptions, 
not to mention errors. The implication is that if the 
assumptions are incorrect or that the errors are much 
greater than thought, then there are no truly large 
distances in the universe. If that is the case, then the 

1 Other than the sun, of course.
2 This name comes from the Hebrew word used in Genesis 1:11 translated as “bring forth” or “sprout.”
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universe at most may be a few thousand light years 
in size, and light from the most distant regions could 
have arrived at the earth by now.

How reasonable is this approach? There are at least 
two problems. First, it fails to answer the properly 
formulated light travel time problem as I discussed 
above. Second, it fails to adequately address the great 
distances involved in astronomy. In what follows I 
will explore various methods of finding distances in 
astronomy. Because distance determination methods 
beyond the solar system rely upon distances within 
the solar system, I briefly discuss solar system 
distances first. I will spend far more time discussing 
methods used to find the distances within the Milky 
Way galaxy, mostly to stars, and then consider extra-
galactic methods. I will present the most commonly 
used ones, plus a few of the more specialized ones. 
This is not an exhaustive study, for I will omit some 
of the more specialized distance determination 
methods. In each case I will discuss the assumptions 
and likely errors. I will evaluate the errors to see if they 
may accumulate so as to yield a universe far smaller 
than usually thought.

Solar System Methods
The ancient Greeks attempted measurements of 

the sizes and distances of the moon and sun. The best 
ancient work on this subject was that of Aristarchus 
of Samos (310–230 BC). Aristarchus determined that 
the angle that we observe between the moon and 
sun at the moon’s quarter phases was 87°, and from 
geometry he concluded from this that the sun must 
be 18–20 times farther away than the moon. Because 
the sun and moon appear about the same size in the 
sky, this result also implied that the sun must be  
18–20 times larger than the moon. The earth’s shadow 
during a lunar eclipse is circular (because the earth 
is a sphere), and Aristarchus estimated that the moon 
is about  the size of the earth’s shadow. Combining 
all this information in geometric construction, 
Aristarchus determined the sizes and distances of 
the sun and moon compared to the earth’s size. He 
found that the moon was about  the diameter of the 
earth but that the sun’s diameter was about seven 
times the earth’s diameter.3 Aristarchus was the first 
person that we have record of being a heliocentrist, 
and many surmise that his conclusion about the 
sun being far larger than the earth influenced him 
to reach that conclusion. However, Aristarchus had 
seriously underestimated the distance of the sun, for 
the angle between the quarter moon and sun is far 
closer to 90°, with result that the sun is 400 times 
farther away than the moon (and 400 times larger).  
Nevertheless, the ancient values were accepted until 
a few centuries ago. Around 200 BC, Eratosthenes 

accurately measured the diameter of the earth 
(Faulkner 1997), which allowed computation of 
absolute sizes and distances for the sun and moon.

The first person to determine the relative distances 
of the planets from the sun was Nicolaus Copernicus 
(1473–1543). He did this in his book, De Revolutionibus 
(On Revolutions), published in 1542. His book was 
very influential in providing an argument for the 
simplicity of the heliocentric model as compared to the 
geocentric Ptolemaic model. However, Copernicus did 
more than that in his book; he used several centuries 
of data to determine the true relative orbital periods 
and orbital sizes of the naked eye planets, Mercury, 
Venus, Mars, Jupiter, and Saturn. No one had done 
this prior to Copernicus, because up to that time nearly 
everyone was a geocentrist, and such a computation 
was not possible in the Ptolemaic model. Mercury and 
Venus, orbiting closer to the sun than the earth, are 
inferior planets; the other three planets are superior 
planets. Fig. 1 shows the circumstances of how we 
view a superior planet. When a superior planet is on 
the other side of the sun as reckoned from the earth, 
and hence invisible to us, we say that the planet is in 
conjunction with the sun. When the planet is opposite 
the sun as seen from the earth, we say that the planet 
is at opposition. Notice that a superior planet is closest 
to the earth at opposition, so this is the best time to 
look at a superior planet.

Both the superior planet and the earth orbit the 
sun, but in Fig. 1 we can imagine that the earth does 
not move (this is geocentric). The length of time it 
takes for a planet to go from one conjunction with the 
sun to the next conjunction with the sun is the synodic 
period. The sidereal period, the true orbital period, is 
the length of time required for a planet to complete 
one orbit as viewed by an observer from outside of 
the solar system, or at least from the viewpoint of an 
observer who is not orbiting the sun as the earth is. 
Since the earth orbits the sun as do the other planets, 
it is not possible for us to measure directly a planet’s 

3 The moon’s diameter actually is ¼ the earth’s diameter, while the sun’s diameter is 109 times the diameter of the earth.
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Fig. 1. Circumstances of viewing a superior planet.



213Astronomical Distance Determination Methods and the Light Travel Time Problem

sidereal period. During one synodic period the earth 
will lap a superior planet, and Copernicus showed 
that the relationship between the sidereal period, P 
(in years), and the synodic period, S (in years), for a 
superior planet is

1/P = 1−1/S.

For the case of an inferior planet, the inferior planet 
laps the earth, so the relationship for an inferior 
planet is

1/P = 1 + 1/S.

Since Copernicus had data spanning several 
centuries, he was able accurately to calculate the 
sidereal periods of the five naked eye planets.

Partway between conjunction and opposition, a 
superior planet is at quadrature, meaning that the 
planet makes a right angle with the sun as viewed 
from earth. Notice that there are two quadrature 
points in Fig. 1. The arc length along the superior 
planet’s orbit between the two quadrature points 
that contains the opposition point is shorter than the 
arc length between the two quadrature points that 
contains the conjunction point. Assuming a near 
constant rate of revolution, a superior planet takes 
less time to go from one quadrature to the next while 
passing through opposition than it takes to go from 
one quadrature to the next while passing through 
conjunction. The larger an orbit is, the less difference 
there is between these two lengths of time. Assuming 
circular orbits (a close approximation in most cases), 
the ratio of these two lengths of time is related to 
orbital size. Copernicus was able to work out the 
relative sizes of the orbits of the three naked eye 
superior planets in terms of the earth’s orbital size.

Similar reasoning applies to the inferior planets. 
The circumstances of an inferior planet are shown 
in Fig. 2. Notice that an inferior planet cannot be at 
opposition to the sun, nor can it be at quadrature. 

However, an inferior planet can be at conjunction with 
the sun two ways, when the planet passes between 
the earth and sun and when the planet passes on the 
other side of the sun. When between the earth and sun 
we say the planet is at inferior conjunction and that 
it is at superior conjunction when on the other side of 
the sun. When an inferior planet makes the greatest 
angle with the sun as seen from the earth, we say that 
the planet is at greatest elongation. Notice that there 
are two points of greatest elongation, one east of the 
sun and one west of the sun. The arc length between 
the greatest elongation points containing inferior 
conjunction is shorter than the arc length between 
the two greatest elongation points containing superior 
conjunction. Assuming constant speed, it takes less 
time for an inferior planet to travel from one greatest 
elongation to the other while passing through inferior 
conjunction than it does to pass from one greatest 
elongation to the other while passing through superior 
conjunction. The ratio of those two time intervals is 
related to the size of the orbit of the inferior planet. 
In a manner similar to computation of the superior 
planets, Copernicus was able to determine the sizes 
of the orbits of the two inferior planets.

With centuries of recorded data, Copernicus was 
able to compute the orbital sizes and periods of the 
then known planets with considerable accuracy. 
Those values stood for some time. The only limitation 
was that the orbital sizes were known in terms 
of the earth’s orbital size. The astronomical unit 
(AU) is defined to be the earth’s orbital size, or the 
average distance of the earth from the sun. While 
the average distances of the other planets from the 
sun (in astronomical units) were well determined, the 
astronomical unit itself was not. As mentioned above, 
Aristarchus had measured the astronomical unit, but 
had seriously underestimated it. A few other ancient 
Greeks had similarly computed the astronomical 
unit. Best known was Claudius Ptolemy (AD 90–168), 
whose result was similar to Aristarchus’s, and his 
was the value used throughout the Middle Ages.

With the invention of the telescope, the 
measurements of the astronomical unit greatly 
improved and approximated the modern value. People 
soon realized that the infrequent transits of Venus 
across the sun offered a good way to determine the 
astronomical unit’s length.4 The method is to observe 
Venus’s transit at two widely separated points on the 
earth. The known distance between the two points of 
observation is the baseline of a triangle. The difference 
in path and/or the duration of the transit from the 
two locations provides the angle opposite the baseline. 
Solution of the triangle using trigonometry allows 
computation of the earth-Venus distance at the time 
of the transit. The earth-Venus distance at transit 

Earth Sun
Conjunction
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Conjunction
Inferior

Greatest elongation
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Fig. 2. Circumstances of viewing an inferior planet.
4 Venus transits occur in pairs separated by eight years.  It is more than a century between pairs of Venus transits.
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was already known in astronomical units, from which 
the length of the astronomical unit follows. Jeremiah 
Horrocks (1618–1641) attempted to do this during the 
Venus transit of 1639, and, while his value was an 
improvement over previous estimates, it fell short of 
the modern value. The next transits of Venus were in 
1761 and 1769, and a concentrated international effort 
allowed successful measurements of the astronomical 
units that are close to the modern accepted value. 
This was repeated at the transits of Venus in 1874 and 
1882. In 1895 Simon Newcomb (1835–1909) combined 
data from these transits with measurements of the 
aberration of starlight and the speed of light to obtain 
the best measurement of the astronomical unit up to 
that time. The observed parallax of the minor planet 
433 Eros near the earth in 1900–1901 and again 
in 1930–1931 allowed additional refinement. This 
method was similar to the Venus transit method in 
that it allowed the measurement of the earth-Eros 
distance in kilometers, which, since that distance 
was already known in astronomical units, allowed 
calibration of the astronomical unit.

There was another pair of Venus transits in 2004 
and 2012, and the next one won’t be until the twenty-
second century, but, while interesting, they don’t 
attract the scientific attention that they once did. 
The reason is that 50 years ago astronomers began 
to use radar reflected off the surfaces of solar system 
bodies to accurately measure their distances. Since 
the distances are known in astronomical units, this 
allows determination of the astronomical unit. These 
methods are far more precise than what we can learn 
from Venus transits.

Stellar Distances
Trigonometric parallax

Radar ranging doesn’t work to find the distances 
of stars, because stars are so incredibly far away that 
any return signal would take many years and would 
be very feeble. The only direct method of finding 
stellar distances is trigonometric parallax. As the 
earth revolves around the sun each year, we change 
our vantage point from which we view stars (see fig. 3). 
Our change in location causes the apparent position 
of a nearby star to shift slightly with respect to more 
distant stars. Surveyors on the earth use the same 
principle to measure the distance to remote objects 
or the altitudes of high mountains. With stars, we 
define the baseline to be the radius of the earth’s orbit, 
which is only half the total change in our position 
(the diameter of the earth’s orbit). Thus we define the 
parallax angle to be half the observed total angular 

shift. Let π be the parallax.5 If a is the radius of the 
earth’s orbit and d is the distance to the star, then by 
the small angle approximation 

π = a/d.

If π is measured in seconds of arc, then with an 
appropriate change of units we can write the above 
equation 

π = 1/d,

where the appropriate unit of distance for d is the 
parsec (pc). We choose this unit and this name, 
because it is the distance required for a star to 
have a parallax of one second of arc. A pc is equal 
to 3.09 × 1013 km or 3.26 light years. Obviously the 
nearest stars will have the largest parallaxes. The 
nearest star (Proxima Centauri) is 1.3 pc away, which 
corresponds to a parallax of 0.″76.6 

Friedrich Bessell (1784–1846) measured the 
first parallax in 1838. The star that he measured 
was 61 Cygni. For much of the nineteenth century 
astronomers used a filar micrometer attached to a 
telescope to measure parallaxes. A filar micrometer 
has two thin lines (usually spider web) viewed through 
an eyepiece. At least one of the lines can be moved 
by a screw with very fine threads. A filar micrometer 
allows very precise measurements of small angles, 
such as those required in parallax measurements. At 
the beginning of the twentieth century astronomers 
switched to photography. The standard procedure for 
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Fig. 3. Trigonometric parallax.

5 Note that here π is a variable, not the constant defined to be the ratio of the circumference of a circle to its diameter. We use π, because 
it is conventional to use Greek letters to represent angles, and π is the Greek equivalent to the Latin letter p, the first letter of the word 
parallax.
6 The ″ is the standard expression for a second of arc. There are 60 seconds in one minute, and 60 minutes in one degree of arc.



215Astronomical Distance Determination Methods and the Light Travel Time Problem

measuring parallax has been precision measurements 
of the position of a target star with respect to 
background stars on photographs taken at six month 
intervals, on either side of the earth’s orbit around the 
sun. To do this, astronomers constructed measuring 
engines with very fine threaded screws to move an 
eyepiece over the photographic plates. Any difference 
in position is the result of parallax. Traditional 
parallax measurement done in this manner is very 
tedious, so what is the selection process for appropriate 
candidate stars for further study? Astronomers pick 
high proper motion stars from proper motion studies.  
I will explain proper motion in the next section.

Under good conditions the error in traditional 
parallax measurements has been about 0.″01. Because 
a parallax of 0.″01 would yield a distance of 100 pc, 
many people erroneously conclude that trigonometric 
parallax works to a distance of 100 pc. Even some 
astronomy textbooks have gotten this wrong. Suppose 
that we measure a star’s parallax to be 0.″01. The 
computed distance would indeed be 100 pc, but the 
0.″01 error implies that the actual parallax could be 
anywhere between 0.″00 and 0.″02. These extremes 
correspond to distances anywhere from 50 pc to 
infinity. Obviously such a result is meaningless. 
Consider a measurement of 0.″05, which corresponds 
to a distance of 20 pc. Since 0.″01 is 20% of 0.″05, this 
measurement will have an error of 20%. Thus we can 
say that traditional ground based parallax is reliable 
(within 20%) to a distance of 20 pc (65 light years). 
Note that this relative error will increase for smaller 
parallaxes (greater distances). However, distances 
on the order of 20 pc by themselves are no problem 
for a recent creation. Roughly 760 stars have had 
their distances determined with this accuracy using 
classical techniques from the ground, which probably 
is about 20% of the total number of stars within 20 pc 
of the sun.

Modern technology has revolutionized parallax 
studies. CCD (charge coupled device) cameras 
replaced traditional photography before the end of 
the twentieth century. Charge coupled devices are 
far more sensitive than photographic emulsions. 
Since a charge coupled device records a digital image, 
computers have replaced measuring engines, saving 
much labor. Additionally, there have been several very 
specialized experiments developed for measuring 
parallax to much greater precision than before, but 
many of these have very limited application. Up 
to this point the greatest limitation on all parallax 
measurements has been the blurring effects of the 
earth’s atmosphere. Parallax measurements took a 
huge leap forward when the European Space Agency 
(ESA) launched Hipparcos (HIgh Precision PARallax 
COllecting Satellite) in 1989. Hipparcos had a 3½ 
year mission, and it was specifically designed to use 

the near perfect observing environment of space to 
obtain very accurate positions, parallaxes, and proper 
motions of a huge number of stars with unprecedented 
accuracy. We now have reliable distances of stars out 
to nearly 1,000 light years (Perryman et al. 1997). 
The original Hipparcos catalogue contained nearly 
120,000 stars. In similar manner, the location of 
the Hubble Space Telescope (HST) above the earth’s 
atmosphere and its superb optics make it a suitable 
instrument to measure highly accurate parallaxes, 
though its heavy use for other research projects limit 
that amount of time for positional work.

Building on the success of Hipparcos, European 
Space Agency plans the launch of Gaia late in 2013. 
The Gaia mission has several objectives, including 
obtaining accurate distances of millions of stars out 
to tens of thousands of light years. This information 
ought to provide a very good 3-D map of much of the 
galaxy. If successful, for the first time direct distance 
measurements will exceed the light travel time limit 
of the recent creation model. This would of course 
eliminate any real possibility that the light travel 
time problem could be solved simply by appealing to a 
smaller than thought universe.

Moving cluster parallax
There are many star clusters in our galaxy, the 

Milky Way. A star cluster is a gravitationally bound 
group of stars. There are two types of star clusters, 
open clusters and globular clusters. Open star 
clusters contain hundreds or even thousands of stars, 
but globular clusters contain between 50,000 and 
a million stars. All stars have some motion, which 
astronomers call space motion. Space motion is divided 
into two components, radial and tangential velocities. 
The radial velocity is along our line of sight, and we 
easily measure it by Doppler shifts in lines in a star’s 
spectrum. The tangential velocity is perpendicular to 
our line of sight and is much more difficult to measure. 
Over time, the tangential velocity will cause a star’s 
position in the sky to change slightly. Measurements 
of stellar positions made over several years allow 
us to determine the rate at which a star’s position 
changes. We call this rate of change the proper motion, 
indicated by the Greek letter mu, µ. Proper motion is 
expressed in arc seconds per year. Barnard’s Star has 
the greatest proper motion, 10.4″/yr. Proper motions 
tend to be largest for nearby stars and virtually 
zero for very distant stars. As previously mentioned, 
proper motion surveys have provided the most likely 
candidates for the laborious task of measuring 
parallax. Proper motion surveys typically are done 
by comparing wide-field photographs of stars taken 
years, or even decades, apart. Unlike parallax, which 
is cyclical, proper motion accumulates over time, 
so photographs made over several years or decades 



D. R. Faulkner 216

give a large baseline over which to measure proper 
motions very accurately. While we can measure radial 
velocities directly via the Doppler Effect, we must 
know the distance to convert proper motions into 
tangential velocities. If the distance, d, is expressed 
in pc, and the tangential velocity, VT, is expressed in 
km/s, then the relationship is

VT = 4.74µd.

The members of a star cluster have space velocities 
that are roughly parallel because they share a 
common motion. The parallel space motion and the 
principle of perspective cause the proper motions to 
appear to converge or diverge at some point in the 
sky (see fig. 4). This is the same effect of perspective 
that makes the parallel rails of a train track appear 
to meet near the horizon. The point where the proper 
motions appear to intersect is the convergent point.  
The angle between any given star in the cluster 
and the convergent point is the same angle that is 
between the star’s radial velocity and space velocity. 
The complement of this angle is the angle between the 
space velocity and the tangential velocity. Knowing 
the angle and radial velocity allows us to compute 
the tangential velocity, and since the proper motion 
is known, we can infer the distance. In practice, 
astronomers apply this method to as many members 
of the cluster as possible, and average the results.

As with trigonometric parallax, moving cluster 
parallax has a limited range. For many years 
astronomers had successfully applied this method only 
to the Hyades star cluster (42 pc) and to two groups (a 
group is much more extended and loosely bound than 
a cluster and has fewer stars than a cluster). Until 
the Hipparcos mission, the moving cluster parallax 
method was far more important in calibrating other 
methods. Now that Hipparcos has greatly improved 
trigonometric parallax, this method is not quite as 
important. Hipparcos has recalculated the distance 
to the Hyades as 46 pc and has used the moving 
cluster parallax method to measure the distance to a 
total of ten open star clusters. Other studies involving 
different techniques and telescopes (including the 

Hubble Space Telescope) gave similar results for 
the Hyades. The average of these results, 47 pc, is 
now the standard distance to the Hyades. Moving 
cluster parallax does not work beyond a few hundred 
light years, so this method of finding distances does 
not present a direct problem for a recently created 
universe. If Gaia is successful, the moving cluster 
parallax method may fall into disuse, though it may 
be useful in providing checks of consistency of other 
distance determination methods.

Distance modulus, distance equation, 
and standard candles

Astronomers use the magnitude system to 
measure stellar brightness. Magnitude is measured 
on a logarithmic scale. The magnitude system has 
the added peculiarity of being backwards. That is, 
larger numerical magnitudes correspond to fainter 
stars. If two stars have intensities of I1 and I2, then 
the magnitude difference is

m2−m1 = −2.5 log(I2/I1).

The magnitude system is calibrated by the adoption 
of standard stars having defined magnitude values, 
so accurately measuring a star’s apparent magnitude 
is a straightforward process.

Apparent magnitude is how bright a star appears 
on earth, which obviously depends upon how bright 
the star actually is (its intrinsic brightness) and 
its distance. Astronomers use absolute magnitude 
to express the intrinsic brightness of a star. The 
definition of absolute magnitude, M, is the apparent 
magnitude a star would have if its distance were 10 pc. 
The difference between the two magnitudes, m-M, is 
the distance modulus and is related to the distance, 
in parsecs, by the equation

d = 10(m-M+5)/5.

Therefore, if we know the absolute magnitude of a 
particular star, we can find its distance by measuring 
its apparent magnitude and using the above distance 
formula. We shall see later that there are standard 
candles for which we think that we know M. That 
information with the above equation yields the 
distance.

Statistical parallax
There are classes of stars for which we believe 

that the members of the class have similar absolute 
magnitude. An example would be stars of the same 
spectral and luminosity class.7 Another example would 
be RR Lyrae variables, which I will discuss later. If we 
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Fig. 4. Proper motion of cluster stars appear to converge 
at one point.

7 Luminosity class is defined by the absolute brightness of stars. For a given spectral type, luminosity class depends entirely upon the size 
of the star.
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consider the members of such a homogeneous group of 
stars within a narrow range of apparent magnitude, 
then we conclude that they must lie at some mean 
distance. We can ascertain the mean distance by 
measuring the radial velocities and proper motions of 
the selected group of stars. It is also necessary that 
we know the location of the solar apex, the direction in 
which the sun is moving through space. Proper motion 
studies long ago revealed the solar apex.8 We can use 
the mean distance and mean apparent magnitude to 
determine the absolute magnitude of any member of 
the sample from the above equation. Once we know 
the absolute magnitude of any particular star in the 
group that we are considering (not necessarily in our 
sample to establish the mean distance), we can use 
the distance formula to find the distance.

Statistical parallax does not yield the confidence that 
comes from trigonometric parallax measurements, 
so we use the former only when the latter fails. 
Statistical parallax methods have been very useful in 
calibrating some of the indirect methods, such as the 
RR Lyrae variable method and the Cepheid variable 
method. With the improvements in trigonometric 
parallax from Hipparcos, a few RR Lyrae stars and 
Cepheids can be measured directly, so the method 
of statistical parallax is less important now. Again, 
if Gaia is successful, there probably will be no more 
need for the statistical parallax method.

Cluster main sequence fitting
The Hertzsprung-Russell (HR) diagram is a plot of 

the luminosities of stars versus their temperatures (see 
Faulkner and DeYoung 1991) for a discussion of the 
HR diagram). Fig. 5 shows a schematic Hertzsprung-
Russell diagram. A Hertzsprung-Russell diagram 
can plot other quantities, such as absolute magnitude 
vs. spectral type or color. When considering a group of 
stars at the same distance (such as in a star cluster), 
the Hertzsprung-Russell diagram may be a plot of 
apparent magnitude vs. color. The easiest way to 
measure stellar temperature is with color. We generally 
use colored filters in magnitude measurements. A 
hot star will appear brighter in the blue part of the 
spectrum than in the red. Conversely, a cool star 
will be brighter in red than in blue (see fig. 6). The 
difference in magnitude measured in two different 
parts of the spectrum is a color. The most common 
color is B-V, where B is a blue magnitude and V is 
a visual (yellow-green) magnitude where the human 
eye is most sensitive.9 A plot of magnitude versus 
color is a color-magnitude (CM) diagram. The most 
common type of color-magnitude diagram is V versus 
B-V. One might expect that such a plot would show no 
correlation between the two variables, but most stars 

fall along a diagonal path that astronomers call the 
main sequence (MS). The hottest stars usually are the 
brightest, and the coolest generally are the faintest. 
Most stars lie along the main sequence. Those that 
lie above the main sequence are very large, so we call 
them giants, while those that lie below are very small, 
and we call them white dwarfs.

Obtaining a color-magnitude diagram of a star 
cluster is a matter of observation. Unless the cluster 
is very far away and hence faint, we can identify the 
main sequence. Assuming that the main sequence 
of each cluster represents the same sort of stars, 
comparison of the main sequence for different clusters 
will reveal the relative distances. For instance, if one 
cluster has a fainter main sequence than another 
cluster, then we conclude that the fainter cluster has 
a greater distance. If we know the distance to any one 
cluster, then we can establish the absolute magnitude 
of the main sequence at any color. We say that the 
main sequence is calibrated. We may compare 
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Fig. 5. Schematic Hertzsprung-Russell diagram.

8 William Herschel first did this in 1783.
9 This also is where the sun’s peak luminosity “just happens” to be.
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the main sequence of a cluster for which we do not 
know the distance to the calibrated main sequence. 
The amount of shift between the two is the distance 
modulus, from which we can calculate the distance.

An example will illustrate this method. For decades 
we have known the distance to the Hyades cluster 
by the moving cluster method. Before Hipparcos, 
neither trigonometric parallax nor the moving cluster 
parallax method could be used to find the distance of 
the Pleiades star cluster. Fitting the main sequence 
of the color-magnitude diagram of the Pleiades to the 
color-magnitude diagram of the Hyades revealed a 
distance of about 140 pc. Astronomers measured the 
distance of other open clusters the same way. The 
distance of the Pleiades determined by Hipparcos 
is 118 pc. Other post-Hipparcos studies have found 
distances closer to 140 pc, which has resulted in 
controversy that has not yet been resolved. The range 
in values for the Pleiades is less than 20%, but that is 
higher than expected. In the case of the ten clusters 
for which Hipparcos has measured distances, the old 
distances are usually within 20% of the improved 
ones. 

While this method is simple in principle, there are 
subtle factors for which we must apply corrections. 
The upper portion of the main sequence is missing 
from most clusters. Astronomers attribute this to 
differences in age, with the oldest clusters missing 
the greatest amount of the upper main sequence. 
Secular astronomers think that the Hyades is a few 
billion years older than the very young Pleiades, so 
the color-magnitudes of the two clusters overlap only 
on the lower main sequence. The double cluster h and 
χ Persei have a portion of the main sequence that the 
Pleiades lack. Most astronomers attribute this to these 
star clusters being even younger than the Pleiades.

Another problem is with the observed magnitudes 
and colors themselves. As light passes through the 
interstellar medium (ISM), it encounters dust, which 
scatters some of the light. The greater the distance 
or the dustier the environment through which the 
light passes, the greater the scattering. Scattering 
dims light, an effect that we call extinction. If a 
star has been dimmed, then we think that the star 
is farther than it actually is, so extinction causes 
us to overestimate distances. Therefore, we must 
account for extinction. This may seem hopeless, 
but observations and theory reveal that interstellar 
dust scatters shorter wavelength (bluer) light more 
efficiently than longer wavelength (redder) light, and 
so obscured stars appear redder than they would 
otherwise. This should not be confused with red shift, 
where the photons have their wavelengths shifted to 
greater values. With interstellar reddening, the flux 

is depressed, but more in the blue than in the red part 
of the spectrum so that the stars appear redder than 
they actually are. The result is that starlight is not 
only dimmed but is reddened as well, and the amount 
of dimming is proportional to the amount of reddening 
that occurs. Therefore, if we can determine the amount 
of reddening, we can correct both the observed color 
and magnitude for interstellar extinction. There are 
several ways to determine how much reddening that 
a star has endured.

From the study of stellar structure and atmospheres 
we know that composition affects the colors of stars 
also. Most stars are about 75% hydrogen by mass, 
with helium making up most of the remainder.  
The remaining few percent or less are made of all 
other elements, which astronomers collectively call 
metals. The variable Z gives the percentage of metal 
abundance. A low metal composition causes the main 
sequence to shift in color toward the blue, the amount 
of shift being proportional to Z. Within a cluster 
observations show that the composition does not vary 
much, so measurement of Z for a few stars is sufficient 
to establish the metalicity for the cluster. We can do 
this with detailed spectral study or by Stromgren 
photometry.10 Stellar models tell how much to correct 
the color-magnitude diagrams for composition.

To summarize the cluster main sequence method, 
we first obtain a color-magnitude diagram for a 
star cluster. From the metal abundance, we correct 
the color, which is a horizontal shift of the main 
sequence. An estimate of interstellar extinction 
allows a blueward shift in color and an upward shift 
in magnitude. Now we compare the corrected color-
magnitude diagram to a calibrated color-magnitude 
diagram to determine how much vertical shift is 
required to cause the magnitudes to agree. This shift 
is the distance modulus, from which we calculate 
the distance. We calibrate the lower main sequence 
knowing the distance to the Hyades, as well as by 
using nearby field (non-cluster) main sequence stars 
for which we know distances from trigonometric 
parallax measurements. The cluster main sequence 
fitting method is a bootstrapping operation that plays 
a key role in calibrating other methods. The inherent 
errors are certainly greater than those for good 
parallaxes, but probably within 20%. This method 
can be used for any cluster for which we can observe 
the main sequence. Astronomers have measured the 
distances of many open clusters this way, usually 
resulting in distances of thousands of light years 
or less. Globular clusters on the other hand have 
distances from 10,000 ly to many tens of thousands of 
light years. Many globular clusters are in the outlying 
parts of our Milky Way galaxy. So when used to its 

10 Stromgren photometry uses intermediate band filters carefully selected to sample portions of the spectrum for certain features. One of 
the filters measures a portion of the spectrum that has many metal absorption lines.
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limits, the cluster main sequence method presents 
a difficulty for a universe only a few thousand years 
old, and it is not likely that the expected errors can 
change the situation. 

Cepheid variable method
Cepheid variable stars are giant pulsating stars 

named for the prototype δ Cephei, which John 
Goodricke (1764–1786) discovered was a variable star 
in 1784. Cepheids regularly change brightness by up 
to two magnitudes with very regular periods. The 
range of Cepheid periods is between two days and 
two months. Cepheids have distinctive light curves 
characterized by a rapid rise to maximum brightness 
followed by a more gradual decline back to minimum 
brightness. Fig. 7 shows a schematic Cepheid variable 
light curve. Henrietta Leavitt discovered their 
significance as a distance determination method in 
1912 while studying them in the Small Magellanic 
Cloud (SMC) and the Large Magellanic Cloud 
(LMC). The Small Magellanic Cloud and Large 
Magellanic Cloud are two small satellite galaxies of 
the Milky Way in which many of the brighter stars 
are easy to observe. She noticed that the average 
apparent magnitudes of Cepheids in either galaxy 
were directly proportional to the logarithm of their 
periods. From the small apparent sizes of the Small 
Magellanic Cloud and Large Magellanic Cloud it is 
evident that any differences in distance within them 
are small compared to the overall distance to the 
Clouds. In other words, all of the stars in the Small 
Magellanic Cloud or the Large Magellanic Cloud are at 
approximately the same distance. Thus differences in 
apparent magnitude must result from real differences 
in absolute magnitude. Therefore there must be a 
period—luminosity (P-L) relation for Cepheids, a 
point that we miss when considering Cepheids nearby 
in our galaxy because of large differences in distance. 
Fig. 8 shows a schematic P-L relationship for Cepheid 
variables.

To use this fact to measure distances requires that 
we calibrate the P-L relation. We can do this if we 
know the distance to at least a few Cepheids from 

some other method, preferably from trigonometric 
parallax. Unfortunately, Cepheids are so rare that 
none of them lie close enough for direct measurement 
by classical techniques, and so astronomers used other 
methods for a long time. A few Cepheids are found 
in star clusters, and so the cluster main sequence 
method could be used to calibrate the P-L relation, 
but statistical parallax has been the preferred 
method. The Hipparcos mission has allowed the 
direct measurement of the parallax of a number of 
Cepheids. The earlier calibrations were changed by 
about 10%. It is unlikely that the Gaia mission will 
change the calibration much, but we shall see.

During the 1950s astronomers discovered that 
there are two types of Cepheids, Type I, or classical 
Cepheids, and Type II, or W Virginis stars. The Type 
II Cepheids are about 1.5 magnitudes fainter than 
the Type I Cepheids. Because Cepheids are quite 
luminous, we can see them at great distances, and 
they provide a crucial link in establishing the extra-
Galactic distance scale. Most of the more distant 
Cepheids are of type I, but the method was originally 
calibrated with type II. When the two types of 
Cepheids were recognized, it caused the perceived 
size of the universe to roughly double. Until the 
Hipparcos mission astronomers feared that the P-L 
relation might have errors as great as 20 or 30%. The 
fact that that was not the case gave great confidence 
that another major re-calibration such as occurred 
during the 1950s is not likely. Cepheid variables 
within the Milky Way galaxy can have distances of 
tens of thousands of light years, so this method of 
finding distances places some pressure on a recent 
creation. The situation is worse when applied to 
extragalactic distances.

RR Lyrae stars
RR Lyrae stars are named for the prototypical 

star, RR Lyrae. RR Lyraes are pulsating variables 
with many similarities to Cepheids. They are on 
the horizontal branch to the upper right of the 
main sequence, but are lower in the Hertzsprung-
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D. R. Faulkner 220

Russell diagram than the Cepheids. Both Cepheids 
and RR Lyrae stars lie in the instability strip of 
the Hertzsprung-Russell diagram where pulsating 
stars are. RR Lyrae stars have amplitude of about 
a magnitude, while their periods are between 0.3 
and 0.7 days. Unlike the Cepheids, however, they 
do not follow a P-L relation, but instead they all 
have about the same average absolute V magnitude. 
Currently we think that their absolute V is +0.75. 
This calibration largely comes from Hipparcos data, 
for several RR Lyrae stars were in the Hipparcos 
data set. This calibration was an improvement over 
the calibration from statistical parallax (none were 
close enough for classical, ground-based parallax 
measurements). There is a small correction for 
metalicity, Z. Furthermore, there is a weak P-L 
relation in wavelengths other than V. Knowing that 
all RR Lyrae stars have about the same absolute 
magnitude, it is obvious that they offer an excellent 
opportunity to measure distances wherever we see 
them. Measurement of the apparent magnitude, m, 
gives the distance modulus, m−M.

Though RR Lyraes are too faint to effectively use 
for finding distances to other galaxies, we observe 
them throughout our galaxy. These variables are 
very common in globular star clusters, so they are 
sometimes called cluster variables. Thus they are the 
prime method for finding distances to globular clusters. 
The nearest globular cluster is about 10,000 ly away, 
and others are well over 50,000 ly distant. Therefore 
the RR Lyrae method clearly suggests that the 
universe is larger than a few thousand light years.

Spectroscopic parallax
Using the various methods of finding stellar 

distances, we can construct a calibrated Hertzsprung-
Russell diagram. This fixes the absolute magnitude 
of various parts of the Hertzsprung-Russell diagram, 
such as the main sequence, white dwarfs, and the 
several types of giant stars. At some points, theory 
of stellar structure and atmospheres must be used 
in constructing a calibrated Hertzsprung-Russell 
diagram. Turning the process around, if we can 
deduce the location of a star on the Hertzsprung-
Russell diagram by some means, then we can infer 
the star’s absolute magnitude. We directly measure 
the apparent magnitude, and so we know the distance 
modulus and hence the distance.

We often can learn the location of a star on the 
Hertzsprung-Russell diagram from spectroscopy. The 
presence and strengths of various absorption lines 
determine a star’s spectral type, which is related to 
temperature or color. The width of the spectral lines 
reveal how large a star is (I will discuss the basic 
physics of this later). The size fixes the star’s location 
on the Hertzsprung-Russell diagram for a given 

spectral type. This method is rather crude and is 
generally used when other methods are not possible.  
This is true of non-variable field stars (that is, stars 
that are not in clusters).

Binary star method
This method can proceed a couple of different ways. 

A visual binary is a binary system in which both stars 
are visible. The stars slowly orbit one another, often 
taking decades to do so. From the orbital motion of 
either star we find the masses of the stars, provided 
that we know the distance to the system. We can turn 
the process around: if we estimate of the masses of the 
stars, then we can treat the distance as the unknown. 
We can infer the masses of the stars by observing 
the spectral types and by assuming that they have 
similar properties as other stars of the same types. 
This process is called the method of dynamic parallax, 
and since is applies only to visual binary stars, it is 
obviously of limited use.

Another method involves the very few visual 
binaries that are also spectroscopic binaries. A 
spectroscopic binary is one in which the motions of 
the stars are detected by their Doppler shifts. From 
the speeds of the stars we can determine the sizes of 
the orbits, and from the angular sizes of the orbits 
we can calculate the distance. Both of these methods 
using visual binary stars are of only limited use, but 
they do offer some checks upon the other methods.

Eclipsing binary stars offer another method of 
finding distances. An eclipsing binary star is a binary 
star system where we view the orbit nearly edge-on so 
that the stars pass in front of (eclipse) one another 
every revolution. The stars are too close together to 
be seen separately, so their light fuses into a single 
image. However, the periodic eclipses diminish the 
amount of light that we receive. A light curve is a plot 
of the amount of light received as a function of time 
throughout a complete cycle. Analysis of an eclipsing 
binary light curve allows us to model the system and 
determine such quantities as the sizes (radii) of the 
stars involved.

The brightness of a star depends upon the size 
and temperature of the star. We may determine 
temperature a number of ways, such as spectral 
classification or the photometric color (a result from 
the photometric data used to create the light curve). 
The Stefan-Boltzman law states that the emission per 
unit area goes as the fourth power of the temperature, 
while the surface area goes as the square of the radius.  
Thus the luminosity, L, is

L = 4πR2 σT4,

where σ is the Stefan-Boltzmann constant. We can use 
stellar atmosphere models to convert the luminosity 
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to an absolute magnitude. We easily can combine 
the absolute magnitudes of the two stars in the 
binary system into a single absolute magnitude. The 
difference between the calibrated apparent magnitude 
and the absolute magnitude is the distance modulus, 
from which we find the distance. While this method 
generally will give us the distance to an individual 
binary star, this method becomes very important 
when applied to binaries in external galaxies, which I 
will discuss shortly.

Geometric methods
A supernova remnant is a cloud of hot gas rapidly 

expanding from the site of a supernova. Several 
supernova remnants are known, but the best example 
is the Crab Nebula. The Crab Nebula coincides with 
the position of a supernova that the Chinese recorded 
in the year 1054. Astronomers have extensively 
studied the Crab Nebula. For instance, there are 
Doppler shifts in the spectrum of the Crab Nebula 
that indicate that gas is moving both toward and 
away from us at speeds of up to 2000 km/s. The best 
interpretation is that the Crab Nebula has a three-
dimensional shape and that gas on the edge of the 
nebula nearest us is moving toward us and gas on the 
opposite side is moving away from us. At the same 
time, comparison of photographs made a few decades 
apart reveal that knots of material in the nebula are 
moving laterally outward as well (perpendicular to 
our line of sight). If we assume that the remnant is 
roughly spherical, then we can equate the measured 
line of sight Doppler motion with the tangential 
velocity. As I discussed earlier, the tangential velocity, 
VT, the proper motion, µ, and the distance, d, are 
related by the equation

d = VT/4.74 µ.

Thus we can find the distance, but further 
consideration allows us to find the time since the 
supernova explosion and the size of the supernova 
remnant as well.

From any photograph of the Crab Nebula, one 
can see that it is not spherical. Assuming that it is 
a prolate spheroid as suggested by the photographs, 
one obtains a distance of about 2,000 pc, an origin 
date of AD 1140 (as would be observed on earth—the 
eruption itself would have been some time prior to 
this) and a diameter of a few light years. The good 
agreement (within a little more than 10%) with the 
observed origin date of 1054 gives us confidence in 
the distance and size. There may have been some 
slowing of the expanding material, which, if corrected 
for, would improve the fit to the date. Overall, this 
appears to be a good distance determination method, 
albeit somewhat restricted in use. Astronomers have 

used a similar procedure to find the distance of Nova 
Persei by studying an expanding shell of gas that 
appeared after its 1901 outburst. Astronomers used a 
similar method to measure the distance to SN 1987A, 
a supernova seen in 1987. The derived distance is the 
same as determined by other methods for the Large 
Magellanic Cloud, the host galaxy of the supernova.

Pulsar distances by dispersion
The name “pulsar” was coined in 1967 for the 

then newly discovered objects that rapidly pulsed, or 
flashed, radio emission. Today astronomers know of 
thousands of pulsars, and they frequently discover 
new ones. Pulsar periods range from a little more 
than a millisecond to a few seconds. We think that a 
pulsar is a rapidly rotating neutron star with a very 
strong magnetic field carried along by its rotation. 
The relative speed between material near the surface 
of neutron star and the magnetic field may be a 
significant fraction of the speed of light. The rapidly 
moving magnetic field accelerates charged particles 
so that they emit radiation that is beamed along the 
axis of the magnetic field. If we happen to lie near the 
cone swept out by the rotating magnetic field, then 
we periodically view down toward a magnetic pole of 
the neutron star (and hence the beam of radiation) 
and experience a pulse of radiation. Therefore, 
the period of the pulsar is the same as the rotation 
period of the pulsar. This explanation of pulsars 
makes specific predictions about the radiation that 
agree with observations. For instance, the radiation 
from a pulsar is polarized and has a characteristic 
synchrotron spectrum, as predicted by theory. One 
of the first pulsars discovered was the famous one in 
the Crab Nebula. The Crab Pulsar flashes 30 times 
per second. The coincidence of the Crab Pulsar with a 
supernova remnant was a key clue in concluding that 
a neutron star is one of the two possible objects left 
behind by a supernova (the other is a black hole). The 
Crab Pulsar is important for other reasons as well.

Pulsars radiate by tapping their considerable 
rotational kinetic energy. In this respect they act 
as flywheels. As their rotational kinetic energy is 
radiated away, pulsars slowly increase their periods as 
they age (astronomers observe small period increases 
in pulsars). With so much stored energy, pulsars can 
last a very long time, but not so supernova remnants. 
Supernova remnants expand and dissipate, so their 
lifetimes are far shorter than pulsar lifetimes. 
Therefore not all pulsars are embedded in supernova 
remnants. Nor do all supernova remnants have pulsars 
inside. There are at least three reasons for this. First, 
some supernovae result in black holes, not neutron 
stars. Second, since our ability to see a neutron star as 
a pulsar depends upon our lying near the cone swept 
out by the neutron stars’ magnetic field, we obviously 
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don’t see most neutron stars as pulsars. Third, there is 
some evidence that some pulsars are ejected from the 
site of the supernova by an asymmetrical explosion. An 
example of a possible pulsar runaway is PSR 1758-23 
and the supernova remnant W28.

Pulsars usually are close to the galactic plane, 
where the material in the interstellar medium 
is densest. Much of the visible light of a pulsar is 
absorbed by dust in the interstellar medium, making 
optical identification of the pulsar or any associated 
supernova remnant impossible in many cases. 
However, the radio emissions are not affected by dust 
very much, so we may observe pulsar radio emissions 
from considerable distance. On the other hand, charged 
particles (mostly electrons) in the interstellar medium 
do affect radio emissions. The speed of propagation of 
radio waves is slowed slightly by the electrons, with 
the amount of slowing depending upon the frequency. 
High frequency waves are less affected than low 
frequency waves. Therefore, if we simultaneously 
observe pulses at various wavelengths, we find that 
the pulses observed at lower frequencies are delayed 
slightly from pulses observed at higher frequencies. 
Astronomers call this effect dispersion.

The amount of dispersion also depends upon the 
column density of electrons, which is the product of the 
average number density of electrons and the distance. 
If we measure the dispersion and know the average 
number density of electrons between a pulsar and us, 
we can find the distance. Astronomers believe that the 
average electron number density is 0.028/cm3. This 
figure was derived from the measured dispersion and 
known distance of the Crab Pulsar. This is why the 
Crab Pulsar is a very important object. This method 
relies upon the assumption that the number density 
of electrons is reasonably uniform in the interstellar 
medium and that we know what the average value 
of the number density is. Given the relatively large 
distance to the Crab Pulsar we have confidence that 
the derived number density of electrons probably is 
a good average. Most pulsar distances measured by 
this method are less than 2000 pc, the distance to 
the Crab Pulsar. Some of the nearby pulsars could 
have average number densities that deviate from the 
assumed average, which would of course affect the 
distance determination. It is unlikely that the error 
in any case is as much as a factor of two.

Extra-Galactic Distances
Other galaxies are so far away that only the 

brightest individual stars are visible, and then only 
in the nearest galaxies. Until recently, only the 
Cepheid variables among the methods described 
in the previous section were possible with other 
galaxies. Most extra-galactic distance determination 
methods rely upon establishing some sort of standard 

candle; that is, concluding that there is some class of 
very bright objects for which we know the intrinsic 
brightness, or absolute magnitude. If we measure the 
standard candle’s apparent magnitude, then we find 
the distance modulus, and hence the distance.

Eclipsing binaries
As previously mentioned, the Milky Way galaxy 

has two small satellite galaxies, Large Magellanic 
Cloud and the Small Magellanic Cloud. At distances 
of perhaps 160,000 and 200,000 light years, 
respectively, the Large Magellanic Cloud and Small 
Magellanic Cloud represent very important steps in 
establishing extra-galactic distances. For instance, the 
P-L relation was discovered in the Large Magellanic 
Cloud and Small Magellanic Cloud. Many Cepheids 
are readily visible in the Magellanic Clouds, and they 
are used here to calibrate that and other methods. 
Unfortunately, there has been some disagreement 
over the distances to the Large Magellanic Cloud  
and Small Magellanic Cloud, which introduces 
uncertainty in the calibrations of many other 
methods. To sort this out, Guinan et al. (1998) used 
the Hubble Space Telescope to observe an eclipsing 
binary star in the Large Magellanic Cloud. From the 
earlier discussion of eclipsing binary stars, we saw 
that we can find the absolute magnitudes of the stars 
involved. When compared to the apparent magnitude, 
the distance easily follows. The distance of the Large 
Magellanic Cloud that they found (166,000 ly) was 
similar to the distance that had been established for 
decades, but was about 20,000 ly less than a more 
recent distance from the improved calibration of the 
Cepheid method with the Hubble Space Telescope. 
The discrepancy (a little more than 10%) has not been 
resolved. Astronomers have determined the distances 
of several other eclipsing binary stars in the Large 
Magellanic Cloud, Small Magellanic Cloud, M31, and 
M33. These are the closest galaxies of any size.

Extra-galactic Cepheid variables
Because Cepheids are intrinsically very luminous 

(M = −6 for the brightest), astronomers can identify 
them in the nearest galaxies. As discussed earlier, 
we calibrate this method in our own galaxy, and so 
it represents the important transition from stellar 
to extra-galactic distances. Of course we make 
the assumption that the Cepheids seen in other 
galaxies are similar to the ones in the Milky Way. 
The re-calibration of the 1950s was a result of the 
realization that we were seeing a different type in 
other galaxies than the type used to calibrate the 
method. At first this may seem a promising avenue 
of pursuit if one wishes to scale back the great extra-
galactic distances. However this will not work unless 
quite serious revision is done. Currently the Cepheid 
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method is used to fix extra-galactic distances to a few 
tens of millions of light years. A revision like that of 
the 1950s would change these distances by only a 
factor of two, far too small to have real consequence 
for recent creation.

As previously discussed, Hipparcos directly 
measured the distances of some Cepheids. For the 
sake of argument, let us ignore the Hipparcos results. 
With that assumption, no Cepheids can have their 
distances measured by parallax, so they all must be 
at least 20 pc away. A few of the brightest appearing 
Cepheids are quite bright, of naked eye brightness in 
some cases. The ones visible in nearby galaxies are 
about 20 magnitudes fainter, implying that they must 
be about l08 times fainter. By the inverse square law 
this means that the faint Cepheids in other galaxies 
must be 10,000 times farther away than the nearby 
Cepheids. If the nearby Cepheids are just beyond 
parallax measurement, say l00 ly, then the extra-
galactic ones must be roughly a million light years 
away. The only way this distance can be reduced to 
a few thousand light years is to deny that what we 
think are extra-galactic Cepheids are Cepheids at all, 
but rather are some other sort of fainter pulsating 
stars. This raises a number of problems. What kind of 
stars are they? Why don’t we see them nearby? Why 
don’t we see other types of stars, such as the sun, 
in other galaxies? With the largest telescopes and 
modern detectors, stars like the sun should be visible 
to a distance of more than l00,000 ly, yet we do not see 
these stars in other galaxies. Yet the spectra of the 
combined light from these galaxies appear to match 
that of solar type stars. This suggests that solar type 
stars are very numerous in these galaxies.

We usually express extra-galactic distances in 
megaparsecs (Mpc), or one million parsecs. One Mpc is 
then 3.26 million ly. Until the Hubble Space Telescope 
the Cepheid distance method worked out to a distance 
of about 6 Mpc, far enough to measure the distances 
of about 30 of the closest galaxies. The Hubble Space 
Telescope has extended the upper limit of the Cepheid 
variable method to nearly 25 Mpc, which includes 
hundreds of galaxies. This range includes the Virgo 
Cluster of galaxies, an important step in establishing 
the extra-galactic distance scale. This was one of the 
key projects for the Hubble Space Telescope.

Brightest stars
The most luminous stars are super giants that 

are brighter than the Cepheids, and so are visible 
at greater distances. The most luminous seem to 
have an absolute magnitude of about −9. So if we 
can identify the few brightest stars in a galaxy and 
measure their apparent magnitudes, then we know 
the distance modulus, and hence the distance, of the 
galaxy. With the Hubble Space Telescope this method 

works to a distance of about 200 Mpc, whereas 
before the Hubble Space Telescope it worked to a 
distance of about 25 Mpc. This obviously is a crude 
method, depending upon the accuracy to which we 
know the absolute magnitude of the brightest stars. 
The error inherent in this method could easily be 
on the order of l00%, but this does not mean that 
this method has nothing to say about light travel 
times. An error of 100% amounts to a factor of two. 
To reduce a distance of l00 million ly to l0, 000 ly 
would require an error of a million percent, which is 
obviously not the case.

Novae
Novae is the plural of the word nova, which comes 

from a Latin word meaning “new.” Since ancient 
times astronomers have known novae as stars that 
suddenly appear without warning and then fade. 
They are not actually new stars, but are stars that 
temporarily flare up to thousands of times brighter 
than usual. At one time astronomers thought that 
a nova was an exploding star, a misconception that 
persists with the public. Today astronomers believe 
that novae occur in binary systems in which the 
stars are close together and one of the stars is a 
white dwarf. Mass transfer from the companion star 
results in a build-up of hydrogen on the surface of the 
white dwarf. Eventually thermonuclear detonation 
of the hydrogen occurs, which is the observed 
brightening. The process of hydrogen accumulation 
and detonation repeats many times. Many types of 
novae are recognized today, with some recurring 
every few days or even within a few minutes. The 
amount of brightening is directly related to the 
period between outbursts, so that the ones that recur 
frequently brighten by only a small amount, while 
the classic novae brighten the most and probably 
take thousands of years to repeat. Thus, novae of all 
types represent a continuum.

For our purposes here, we are concerned with the 
classic bright novae. At peak, the brightest novae are 
about l0 times brighter than the brightest Cepheids, 
and so we may observe them in nearby galaxies. Thus 
we can use this method to determine distances a little 
greater than the Cepheid method, but not as far as 
the brightest super giant method. Because it is not 
as well calibrated as the Cepheid method, it has more 
error. The Cepheid variables play a role in calibrating 
this method. If both Cepheids and a nova are seen 
in a nearby galaxy, the distance to the galaxy as 
established by the Cepheids gives the distance to 
the nova. This distance gives that nova’s absolute 
magnitude, and if all bright novae have about the 
same absolute magnitude, the method should work. A 
nova is a relatively rare event, but with monitoring of 
many galaxies, it is not unusual to find them.
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Extra-galactic globular clusters
Globular clusters contain 50,000 to perhaps a 

million stars. They have a spherical symmetry that 
gives them the appearance of large balls, hence the 
name. The absolute magnitudes of globular clusters 
in the Milky Way and the Andromeda galaxy (M31) 
follow a Gaussian distribution. Astronomers call 
this distribution the globular cluster luminosity 
function (GCLF). The globular cluster luminosity 
function’s of the Milky Way, M31, and members of 
the Virgo Cluster of galaxies are similar, suggesting 
that there may be a universal globular cluster 
luminosity function. Knowing the distances of 
individual globular clusters in the Milky Way and the 
distance of M31, astronomers calibrate the globular 
cluster luminosity function in absolute magnitude. 
This allows astronomers to measure the distance 
of any other galaxy by measuring its globular 
cluster luminosity function. The difference of the 
galaxy’s globular cluster luminosity function and 
the calibrated globular cluster luminosity function 
is the distance modulus. There probably is no truly 
universal globular cluster luminosity function, so by 
assuming that there is may introduce an error of 20% 
in distance. Secondarily, astronomers can use the 
apparent sizes of globular clusters to find the distance 
to the host galaxy. Globular clusters appear to have 
a tight distribution in size, so by measuring the 
apparent sizes of globular clusters in other galaxies, 
we can calculate the distances of the galaxies.

Planetary nebulae
Planetary nebulae are clouds of gas that were 

ejected from stars via winds. Astronomers think that 
this process is the transformation of a red giant star 
into a white dwarf star (Faulkner 2007). Similar to 
globular clusters, astronomers have found that the 
luminosities of planetary nebulae follow a Gaussian 
distribution, and they call this the planetary nebula 
luminosity function (PNLF). We can see planetary 
nebula in nearby galaxies, so calibration of the 
planetary nebula luminosity function allows us to 
find the distances of the host galaxies, provided that 
planetary nebula luminosity function of other galaxies 
is similar to that of the Milky Way and M31.

HII Regions
HII refers to singly ionized hydrogen, HI being 

neutral hydrogen. An HII region is a large region 
around hot, bright stars in which the hydrogen is 
ionized. The hot, bright stars are necessary to produce 
enough ultraviolet photons to maintain the ionization. 
The electrons recombine with the protons to form 
hydrogen atoms and in the process emit photons of 
light, some in the visible Balmer series. Reionization 

and recombination repeatedly occur, so that an HII 
region appears very bright. The Great Orion Nebula 
(M42) is an example of an HII region.

The total brightness of an HII region depends upon 
the number and type of stars that are powering it, as 
well as the density of the gas. Thus the luminosities 
of HII regions vary over a large range. However, some 
studies have shown that the linear sizes of the largest 
HII regions are about the same from one galaxy to 
another of the same type. Like the globular cluster 
and planetary nebulae methods, this can give us a 
standard candle. This method is at least as crude as 
the globular cluster method, but it should work to 
about the same distance as the brightest super giant 
method.

Supernovae
As the name suggests, supernovae are eruptions 

in stars that are much more energetic than those of 
ordinary novae. Based upon differences in observed 
light curves and spectra, there are two basic types: 
type I and type II, with type I having subclasses a, 
b, and c. Astronomers think that type II, type Ib, and 
type IIc supernovae are explosions of high mass stars 
caused by the catastrophic collapse of their cores. 
Type Ia supernovae appear to originate in interacting 
binary stars where one of the members of the system 
is a white dwarf that accretes enough material from 
its companion to exceed the Chandrasekhar limit. 
The Chandrasekhar limit is the maximum mass that 
a white dwarf may have, and is a little more than 
1.4 times the mass of the sun. When a white dwarf 
exceeds this limit it catastrophically collapses into a 
much smaller neutron star or is completely disrupted. 
The collapse is accompanied by a tremendous release 
of energy that is we see as the supernova.

Both theory and observations suggest that type Ia 
supernovae have about the same absolute magnitude at 
maximum brightness.11 This uniformity and extreme 
brightness makes them an excellent standard candle. 
At maximum brightness supernovae can outshine an 
entire galaxy, at absolute visual magnitude of −19.3. 
This is 10,000 times brighter than the brightest 
super giants, and so supernovae should be visible 
about a hundred times farther away than super 
giants. Assuming that we have properly calibrated 
the brightness of supernovae and assuming that 
supernovae in other galaxies are similar to ones in or 
near our galaxy, we can use them to find the distances 
of galaxies in which supernovae are observed. Despite 
their lack of uniformity, type II supernovae can now be 
used with what is called the expanding photosphere 
method.

Problems of the supernovae method stem from 
doubts about the calibration, questions about the 

11 Hartnett has pointed out possible circular reasoning in the use of Type Ia Supernovae in distance calculations. See Harnett (2011). 
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uniformity of supernovae, and the often decades-long 
wait between supernovae in any particular galaxy. 
Given these caveats, this is still a very powerful method 
in that we can see supernovae over such great distances 
(more than a billion light years). To solve the problem of 
the rarity of supernovae, a network of robotic telescopes 
takes images of many different galaxies each night. The 
system quickly compares the images to archival images 
to find any supernovae that may have happened. When 
the system finds a supernova, it instantly relays that 
information to major observatories so that astronomers 
can measure the brightness and obtain spectra of the 
supernovae. This effort has netted many supernovae. 
In 2013 the Hubble Space Telescope detected a type 
Ia supernova about ten billion light years away. In 
1999 data from type Ia supernovae played a key role 
showing that the rate of expansion in the universe may 
be speeding up, an effect attributed to dark energy. 
These very powerful methods of finding distances are 
obviously difficult to reconcile with a creation only a 
few thousand years old.  

Tully-Fisher relation
The Tully-Fisher relation, pioneered in the late 

1970s, is a very useful way to measure the distances 
of spiral galaxies. Spiral galaxies, such as the Milky 
Way, contain large, cool, rarified clouds of neutral 
hydrogen (HI regions). Under such conditions 
electrons mostly are in the ground state, but they 
may undergo a highly forbidden transition from the 
parallel to the antiparallel spin state with respect to 
the proton. Each transition is accomplished by the 
emission of a photon at a wavelength of 21 cm, which 
is in the radio part of the spectrum. This radiation 
is easily observed, and for decades radio astronomers 
have used 21 cm emission to map out the spiral 
structure of the Milky Way.

This emission is very sharp, but because of the 
orbital motions of the clouds about the center of a 
galaxy, the emissions are Doppler shifted so that 
the 21 cm emission from a galaxy is broadened. The 
amount of broadening depends upon the speed of the 
revolving clouds, which, since the clouds are following 
Keplerian motion, depends upon the mass of the 
galaxy. The amount of mass in a galaxy should be 
directly related to the amount of stars, and hence to 
the total brightness of the galaxy. Therefore there 
should be a direct relation between the intrinsic 
brightness of a galaxy and the broadening of the 
21 cm emission. The calibration of this relation is 
accomplished by observing nearby galaxies, for 
which distances can be measured by other methods. 
Use of this method requires measurements of 21 cm 
emission broadening and the apparent magnitude 

of a galaxy. A correction to the broadening must be 
applied by measuring the angle by which the plane of 
the galaxy is inclined to our line of sight. This can be 
measured from a photograph of the galaxy. In recent 
years astronomers have discovered that this method 
works best in infrared rather than visual.

Because elliptical galaxies lack hydrogen gas 
clouds, the Tully-Fisher relation does not work for 
them. However astronomers have developed a similar 
method for ellipticals that makes use of the velocity 
dispersion of stars that exists in such systems. The 
integrated spectrum of a galaxy is that of the combined 
light of all of the stars in the galaxy. Because stars 
have absorption spectra, the integrated spectrum of a 
galaxy is also an absorption spectrum. Rather than a 
broadening in an emission line, the orbital velocities 
of the stars produces broadening in the profiles of 
absorption lines in the spectra of ellipticals. 

The errors of distances determined by the Tully-
Fisher relation depend upon the calibration (which is 
based upon other distance determination methods) and 
upon the accuracy of the assumption that similar type 
galaxies of the same mass have similar luminosities. 
Variations of 10 or 20% in the luminosities of similar 
mass galaxies could easily be the case, but we do not 
expect that they would be any greater than this. Both 
errors probably would not approach 100%. Overall 
this method is very powerful, because of the great 
distances over which we can measure the dispersion.

Hubble relation
The Hubble relation probably is the best known 

method of determining galaxy distances, and 
undoubtedly it is the method most distrusted by 
many recent creationists. Edwin Hubble discovered 
his famous relation in 1929, based upon the 
understanding that the universe likely is expanding.
Objects that are moving fastest with respect to 
us ought to be the greatest distance away from us. 
Therefore there should be a linear relation between 
the distance and radial velocity:

V = HD,

where V is the radial velocity,12 D is the distance, 
and H is the constant of proportionality (the Hubble 
constant). Due to either expansion or velocity moving 
away, absorption lines in a spectrum are shifted to 
longer wavelengths. Longer wavelengths are toward 
the red end of the spectrum, so we call this redshift. 
Astronomers have spent much effort in determining 
the value of H, because once we know it we may reverse 
the process to find the distance of any galaxy for which 
we measure its redshift. To find the calibration we 

12 Be aware that while we can speak of redshift in terms of velocity, properly it is not velocity but rather is due to expansion of the universe.  
See Faulkner (2004, pp. 58–60) for further explanation.
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must measure the redshifts and distances (by other 
methods) of a number of galaxies. The greater the 
number of galaxies and the larger the range in their 
distances used in the calibration process, the more 
confidence that we have in the constant.

The original value of H determined by Hubble 
was 550 km/s/Mpc, but by 1960 the value was down 
to 50 km/s/Mpc. The Hubble relation remained 
unchanged until the early 1990s. Today astronomers 
think that H is about 70 km/s/Mpc. Revisions of H 
came about through improved methods and better 
understanding, but also through better handling 
of the data. For instance, different researchers can 
obtain different values of H because they weigh the 
data differently. The 1990s saw much work in the 
determination of H. One of the key projects for which 
the Hubble Space Telescope was constructed was to 
better determine the Hubble constant. The increase 
in the value of H in the early 1990s caused a decrease 
in the estimated age of the big bang universe and a 
re-evaluation of the ages of globular clusters.

Any redshift measurement is a combination of 
expansion and true Doppler motion. When using the 
Hubble relation to determine the distance of a faraway 
galaxy, the expansion term dominates the redshift, 
so the Doppler motion isn’t important. However, for 
nearby galaxies the Doppler motion easily may exceed 
the expansion term. But nearby galaxies are the ones 
for which we have reasonably confident distances and 
hence are used for calibrating H. Therefore to determine 
H one must account for the Doppler motion inherent 
in the nearby (and hence low redshift) galaxies. How 
to adequately handle this problem has been a major 
part of the disagreement over the value of H. It should 
be kept in mind that use of the Hubble relation is an 
extrapolation, but this does not necessarily invalidate 
its use. The Hubble relation generally is the only 
method by which we can measure the distances of 
quasars, the most distant objects in the universe.

Since the 1960s the Hubble relation has come 
under attack from Halton Arp. His work will not 
be discussed here, but suffice it to say that he has 
presented evidence that calls into question the 
trustworthiness of redshifts to relate distances. Most 
astronomers dismiss Arp’s work mostly because of 
its implications for cosmology: the big bang theory 
demands that redshifts be cosmological. For this 
reason many recent creationists applaud Arp’s work. 
However, this support from recent creationists stems 
in part from the failure to fully understand Arp’s 
position. Arp doesn’t dispute that in general the 
Hubble relation works; he merely questions the slavish 
application of the Hubble relation for all galaxies and 
quasars. Even if the Hubble relation does not work in 
every case, there is strong evidence that, in general, 
redshift is proportional to distance.

Given these caveats and assuming that Arp is 
wrong, what is the error when using the Hubble 
relation? Doppler shifts can be accurately measured 
and local velocities are insignificant at great 
distances, so the greatest error should occur because 
of uncertainty in the value of the Hubble constant. 
Over the past half century the measurement of H has 
varied by less than a factor of two, and it is not likely 
to vary by more than that. Therefore it is unlikely that 
distances measured with the Hubble relation could be 
in error by more than a factor of two.

Brightest galaxies in clusters
Galaxies tend to associate together in groups, or 

clusters. Within a cluster there is a large range in 
brightness among the members, but it appears that 
from cluster to cluster the brightest members have 
about the same total luminosity. This is very similar 
to the situation for stars, for which the brightest super 
giant stars in any galaxy are about as luminous as 
the brightest super giants in any other galaxy. Just 
as that fact can be used to estimate the distances of 
galaxies, the brightest galaxies in a cluster can be 
used to measure distances to the cluster. This is a 
very crude method, usually giving relative distances, 
so it has only limited use. It can be used when other 
methods fail, finding particular application for very 
distant clusters, which are too faint to have a Doppler 
shift measured by spectroscopy.

Geometric methods
Earlier we saw that the expansion of gases in a 

supernova remnant may be used to find the distance 
to the remnant. If similar motions can be observed 
in extra-galactic objects, then geometric methods 
can be used to find the distances of the objects. At 
extra-galactic distances any transverse motion will 
not be detectable in the optical part of the spectrum. 
However, in the radio portion of the spectrum several 
radio telescopes widely separated around the world 
may be combined to produce a single image having the 
effective resolution of a telescope nearly the size of the 
earth. This is called very long baseline interferometry 
(VLBI). This allows for very accurate relative 
positional work, and so large transverse motions can 
be measured in the radio spectrum. One of the first 
applications of this method was to the galaxy NGC 
4258 (Hernstein et al. 1999).

Discussion
Table 1 is a list of the distance determination 

methods that I have discussed here, along with 
rough estimates of the upper limit of distance that 
these methods can be used. Some of these limits are 
merely estimates. Many of these limits are likely to 
increase.
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The size of the solar system does not present recent 
creation with a light travel time problem. I have 
reviewed 10 stellar and 12 extra-galactic distance 
determination methods. Trigonometric parallax is 
the only direct method, but it works to a relatively 
short distance, with new techniques extending this 
to a maximum of nearly 1000 ly. This is no problem 
for recent creation of only a few thousand years, but 
it is a problem for recent creation if the light travel 
time problem is properly formulated. However, the 
Gaia mission probably will extend the direct method 
of determining distances out to tens of thousands of 
light years. If Gaia is successful, then this will be a 
problem with a universe only a few thousand light 
years in size. Other indirect methods for finding 
stellar distances extend beyond this distance, and at 
their limits of use they place some pressure on the 
concept of a recent creation. The errors inherent in the 
indirect methods easily could be 30% or more, which 
cannot change the picture much either way. The many 
methods are bootstrapped and cross-checked so that 
they do give reasonable consistency and ultimately are 
calibrated to trigonometric parallax measurements. 
The reliability of many methods has been tested with 
results from the Hipparcos mission. In each case the 
calibrations were altered, but generally within the 
errors previously estimated. This is a good indication 
that most of the methods are reliable. 

At this time the one stellar distance method that 
presents a tremendous light travel time problem is the 
Cepheid method. This is because it bridges from intra-
galactic to extra-galactic distances. The Cepheids in 

the Large Magellanic Cloud and the Small Magellanic 
Cloud played a crucial role in deducing the period-
luminosity relation, and they certainly appear to be 
similar to galactic Cepheids. The Cepheids seen in 
more distant galaxies also appear to be similar in 
galactic ones. If this is true, then a simple calculation 
shows that the extra-galactic Cepheids are at least 
two orders of magnitude more distant than a young 
creation would seem to allow.

Some might question if these much fainter 
appearing Cepheids really are the same sorts of 
stars as the brighter appearing Cepheids. There are 
good physical reasons to conclude that these are all 
the same kind of stars. The absorption lines seen 
in the spectra of stars reveal not only composition, 
but more importantly, the temperature as well. The 
spectral lines of a particular element can be present 
only if the element is present in the star. However 
the absence of spectral lines does not mean that an 
element is not present in a star. The vast majority 
of stars are made almost entirely of hydrogen, 
but hydrogen lines are not seen in every star. The 
electronic transitions that cause hydrogen lines in the 
visible part of the spectrum require that a significant 
number of hydrogen atoms have electrons in the first 
excited state. The temperatures in the coolest stars 
are so low that nearly all of the electrons are in the 
ground state. In the hottest stars virtually all of the 
hydrogen atoms are ionized. Stars with intermediate 
temperatures have a sufficient number of electrons 
in the first excited state to produce hydrogen lines. 
Hydrogen lines strengths are at their maximum at 
a temperature of about 10,000 K. Similar principles 
apply for other elements as well. For instance, singly 
ionized metals have their peak near the temperature 
of the sun (a little less than 6000 K). Therefore the 
types and strengths of spectral lines reveal the 
temperatures of stars.

The widths of lines tell us the sizes of stars. Some 
stars have very broad spectral lines, while others have 
very narrow lines. There are several mechanisms that 
can broaden spectral lines, but the most important 
here is pressure broadening. Pressure broadening 
is caused by Doppler shifts of the atoms as they are 
jostled about by collisions due to the pressure in the 
gas in the atmospheres of stars. The greater the 
pressure, the greater the pressure broadening is.  
Stars must be in hydrostatic equilibrium. That is, 
the outward pressure and inward gravitational force 
must be balanced, or otherwise stars would quickly 
expand or contract. Therefore the amount of pressure 
broadening must be related to the gravity present in 
the atmosphere of a star. Stars of large radius have 
small gravity at their surfaces where spectral lines 
are formed, while small stars have strong gravity. 
Thus the widths of spectral lines tell us how large 

Method Range
Radar ranging Within the solar system
Trigonometric parallax 1,000 light years
Moving cluster parallax 500 light years
Statistical parallax A few thousand light years
Cluster MS fitting A few thousand light years
Cepheid variables 50 million light years
RR Lyrae variables 100,000 light years
Spectroscopic parallax Thousands of light years
Binary star method Thousands of light years
Geometric methods 100 million light years
Pulsar dispersion 50,000 light years
Eclipsing binaries A few million light years
Brightest stars in galaxies 600 million light years
Bright Novae 150 million light years
Globular clusters in galaxies 50 million light years
Planetary nebulae in galaxies A few million light years
Bright HII regions in galaxies 50 million light years
Type Ia supernovae 10 billion light years
Tully-Fisher relation 100 million light years
Hubble relation Billions of light years
Brightest galaxies in clusters Billions of light years

Table 1. List of distance determination methods with 
rough limits of use.
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stars are. Super giants have the thinnest lines, 
giants a little more broad, main sequence stars more 
broad, and white dwarfs have the broadest of all. This 
effect is not just theoretical—it has been confirmed 
with stars for which we have found their radii by 
independent means.

When these principles are applied to Cepheid 
variables, we find that the faintest appearing ones 
are identical to the brightest appearing ones. That 
means that they must have the same temperatures 
and sizes. The intrinsic brightness, or luminosity, of 
a star depends upon the surface area and the fourth 
power of the temperature. The surface area goes as 
the square of the radius, so we can write this as

L = 4πR2 σT4,

where R is the radius, T is the temperature, and L is 
the luminosity. Similar reasoning may be applied to 
other types of stars as well. Therefore other methods 
of finding distances, such as spectroscopic parallax, 
appear to be solidly founded.

All of this reasoning is based upon well-understood 
and tested physics. Some could argue that the physics 
that works here might not work elsewhere. If this were 
true, then we could raise doubts about the physical 
principles involved. This approach undermines a basic 
assumption that makes science possible. We assume 
that there is universality about natural law. That 
is, how the universe operates here and now is how 
it has operated everywhere since creation (miracles 
excepted).13 Indeed some have argued that science is 
a western concept that could only have arisen under 
Christianity where it is understood that there is an 
underlying order imposed upon the universe by the 
Creator. Thus to argue against the universality of 
physical laws amounts to a very subtle attack upon 
what it is creationists are trying to argue in the first 
place.

Other than the Cepheid distance method, the 
extra-galactic distance measurement methods are 
less precise. Their calibration largely relies upon 
the Cepheid method, so any inherent errors in that 
method propagate in the others. This was illustrated 
by the doubling of the size of the universe in the 1950s. 
Additionally, each method has its own uncertainties, 
but it is unlikely that those amount to errors of 100% 
or more. This is not to suggest that these methods are 
useless, but rather that the distances could be off by a 
factor of two. Distances that are incorrect by a factor 
of 10 would require a 1000% error, while the factor of 
100 mentioned above would require a 10,000% error.

Such large errors would be very difficult to accept. 
In most galaxies we do not see any individual 
objects (stars, star clusters, nebulae). Why? It is 

most reasonable to assume that the vast majority 
of galaxies are at such immense distances that we 
cannot see the individual objects. Only in nearby 
galaxies do we see individual objects, and even then 
we only see what appear to be the brightest stars and 
biggest clusters and nebulae. That is, with exception 
of their much fainter brightness and smaller size, 
these objects appear identical with the biggest and 
brightest objects in our galaxy.

To scale back the size of the universe to avoid the light 
travel time problem would require that we radically 
alter our understanding of various astronomical 
observations and astrophysical principles. For 
example, stars that appear to be Cepheids in nearby 
galaxies are not. Likewise, stars like the sun that 
appear to be common in the solar neighborhood and 
should be visible in nearby galaxies if they are much 
closer to us than is currently thought are somehow 
absent. Also, the spectrum of the integrated light of 
every other galaxy appears to be that of average stars 
that are rather common in the Milky Way, but this 
cannot be because they would be resolved easily if 
they were only a few thousand light years away.

What, then, are the galaxies that we see? For 
a long time astronomers thought that they were 
nebulae in our own galaxy, and hence not very far 
away. It was in 1924 that that Hubble first observed 
a few of the brightest stars in the Andromeda galaxy, 
establishing that it (and by inference other galaxies) 
was a stellar system in its own right. There is now 
abundant evidence that the Andromeda galaxy, as 
well as many other galaxies, truly are more distant 
than a few thousand light years. Though we may not 
know the distance to any galaxy with a lot of precision, 
the distance is known to be quite large.

Conclusion
In my survey of astronomical distance  

determination methods I have shown that we can 
have confidence that the universe really is as large 
as astronomers claim. To explain the light travel time 
problem by appealing to a universe much reduced in size 
is not tenable. Therefore, the light travel time problem 
is real, and it requires a real solution. Fortunately, 
we have a number of solutions already in the creation 
literature, but further proposals are welcome.
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