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Abstract
Modern biology has come to realize that all life is built upon information stored within DNA. Until now, 

discussions of genetic information have relied almost exclusively on models of information that do not 
use variables. The result is that a scientific understanding of life is hindered, because investigations are 
based on inaccurate models of biological information. 

By contrast, the Bible’s description of created kinds implies an information model which uses 
variables. The findings in this paper show that a model which uses variables forms a stronger basis for 
true scientific understanding of biology and, by implication, the Bible provides a superior foundation 
for scientific investigation. In addition, the paper is able to propose a definition of biblical kinds based 
upon an information model which uses variables. 
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Introduction
The fundamental issue in the debate over evolution 

is whether or not the variation we see within 
populations can accumulate over time to result in new 
kinds of organisms. Evolutionists say yes while biblical 
creationists say no. The evolutionary world view can be 
seen when Travis and Reznick state, “Darwin argued 
that macroevolution is just microevolution writ large, 
or that the process we see and study as the cause of 
microevolution will, given sufficient time, also cause 
everything that we attribute to macroevolution.” 
(Travis and Reznick 2009, p. 126). 

However, Darwin’s argument clearly ignores the 
biblical revelation of created kinds (Genesis 1:11–27) 
in favor of human wisdom. As the Bible states, “They 
exchanged the truth about God for a lie, and worshiped 
and served created things rather than the Creator—
who is forever praised. Amen.” (Romans 1:25) 

Independent of the specific mechanisms 
evolutionists cite, the tie between microevolution 
and macroevolution is necessarily dependent upon 
the fundamental idea that “heritable differences 
. . . accumulate . . . eventually giving rise to the 
larger differences between species and higher taxa” 
(Silvertown 2009, p. 29). This notion of accumulated 
change leads to the conclusion that “All organisms 
are related by common descent from a single form 
of life” (Ayala 2009, p. 133). This common descent, 
sometimes referred to as universal common descent, is 
often pictured as a tree of life (Ayala 2009). Different 
authors may give the tree slightly different shapes, 
but it’s still a tree (Futuyma 1986; Ruse and Travis 
2009). In contrast, the biblical kinds are sometimes 
pictured as a lawn or orchard as opposed to a tree 
(Patterson 2006).

For the purpose of this paper I define an evolutionist 
as anyone who holds to the idea of common descent. 
Note that this definition is not limited to naturalists, 
but includes anyone who holds to common descent. 
This can include Intelligent Design proponents and 
creationists. Though evolutionists may debate the 
mechanisms, they all hold to the man-made idea 
that one kind of organism can change into another. 
Common descent, by definition, rejects the idea that 
life consists of bounded sets which cannot be bridged 
by inheritance.

However, descent from a common ancestor has 
never been observed. It is simply an interpretation 
of externally observed differences, based on an 
evolutionary world view. The biblical world view 
interprets the exact same externally observed 
differences as variation within unchanging kinds 
and claims that evolution does not happen. 

The Bible tells us in 2 Corinthians 10:5 that we 
should “take captive every thought.” Proverbs 14:12 
says, “There is a way that seems right to a man, but 
in the end it leads to death.” I do not mean to imply 
that Proverbs 14:12 is expressly about evolution, 
but it is interesting that evolution is all about death 
and it definitely seems right to men. Clearly the 
fundamental principle in both these verses is that 
man’s thinking alone cannot be trusted and must be 
subjected to God’s revelation in the Bible. 

When we start with the Bible as our basis for 
understanding biology, we find that God created the 
organisms of the world “after their kind” (Genesis 1). 
That language continues in the account of the flood, 
when God says, “And of every living thing of all flesh, 
you shall bring two of every kind into the ark, to keep 
them alive with you; they shall be male and female. 
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Of the birds after their kind, and of the animals after 
their kind, of every creeping thing of the ground after 
its kind, two of every kind will come to you to keep 
them alive.” (Genesis 6:19–20)

If evolution is true, then kinds are only transitory 
observational conveniences, because they are simply 
snapshots of organisms transitioning through 
history. However, the language of Genesis 1 and 6 
implies that kinds are an enduring organizational 
structure through which God views the life He 
created. Contrary to evolutionary thinking, which 
sees heritable differences as changes in the essence of 
organisms, the Bible paints a picture of life composed 
of bounded groups or sets called kinds, where 
heritable differences are simply variations within 
those kinds. One common misconception is to equate 
species with biblical kinds (Milner 1990), but this is 
neither biblically nor scientifically accurate. The Bible 
does not describe how kinds are defined, but clearly 
states that they exist and never implies evolution in 
the text. 

Because every word of God is true (Numbers 
23:19; 2 Timothy 3:16–17) we expect DNA to be best 
described by an information model which allows 
variation within bounded kinds. Although existing 
work has already successfully shown that meaningful 
messages do not arise from random processes 
(Bradley and Thaxton 1994; Gitt 2007; Riddle 2009; 
Spetner 1997) and even shown that the existence of 
meaningful messages implies an intelligent author 
(Gitt 2007), they do not examine the question of how 
different models of information explain variation and 
how that variation can be bounded. 

This paper examines how variation occurs within 
different information models and considers their 
implications with respect to both structures within the 
cell and observed external differences in organisms. It 
shows that without variables, variation is equivalent 
to evolution, but basic scientific observations cannot 
be explained. On the other hand if a system uses 
variables, variation is bounded and biological 
observations can be easily explained. In such systems 
variation does not accumulate to result in evolution. 
Thus, variation is not simply evolution limited by the 
improbability of creating information through random 
means. In models that use variables, variation is a 
fundamentally different informational property than 
evolution and leads to a proposed definition of biblical 
kinds.

Modification: The Evolutionary View of Variation
The evolutionary world view sees variation as 

modification. The child’s DNA is just a modification of 
the parent’s DNA. This is why, when seeing nothing 
more than variation in the peppered moth population, 
Bernard Kettlewell, “called industrial melanism 

in peppered moths ‘the most striking evolutionary 
change ever actually witnessed in any organism.’” 
(Wells 2002, p. 143) When it was discovered that 
DNA contained “the instructions for life” (Palladino 
2006) evolutionists did not question their assumption 
of common descent, but simply assumed that 
instructions could evolve in a way to match their a 
priori assumption. The assumption that DNA is 
simply a sequence of accumulated modifications is 
seen in statements such as those by Michael Behe, 

Evolution from a common ancestor, via changes 
in DNA, is very well supported . . . scientists who 
sequence human DNA . . . are actually observing 
the results of a struggle that’s gone on for millennia 
(Behe 2007, p. 12).
In Darwin’s Black Box Behe argues eloquently 

for design in the origin of biological machines, and 
notes that this understanding came as science moved 
from general postulations to an accurate elucidation 
of the actual structures and operations in biological 
molecules (Behe 1996). Unfortunately, he does not 
apply the same rigor in his thinking of information 
when he speaks of sequencing DNA. Just as it was 
important to look deeply into the actual structure of 
molecular machines to gain real understanding, we 
must go far beyond simple sequence comparisons of 
DNA if we hope to have a full understanding of how 
DNA functions. 

Random sequence model
Virtually every discussion of DNA recognizes it as 

a sequence of code symbols, so let’s begin by asking the 
question, “Is DNA just a random sequence of symbols, 
where nearly all sequences will be reproduced and 
can compete in natural selection?” 

Whether they’re aware of it or not, this is the 
model used by Richard Dawkins’ biomorph program 
(Dawkins 1996) and the Avida program (Lenski 
et al. 2003), because both systems are designed to 
allow random modification. In nearly all cases the 
modifications do not affect the ability of the organism 
to survive and reproduce. In this model variation 
is achieved by mutating symbols in the sequence. 
This model aligns with evolution, because the entire 
sequence is either open to change or is common to all 
sequences so it is appropriate to say that the essence 
of the sequence is evolving.

The problem, from a biological perspective, is that 
explaining variation as modifications to a random 
sequence cannot explain simultaneous variation and 
stasis. We can see this by looking at random mutations 
to an arbitrary sequence as shown below.

CTTGACAGGC
CTCGATAGTC
ATCCATTCTA
Notice that divergence will happen as quickly as 
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variation, because they are explained by the same 
mechanism. Evolutionists might claim that stasis can 
be explained by natural selection favoring a specific 
form for a time. This may be true, but the point 
being discussed here is that simultaneous variation 
and stasis cannot be explained by the information 
model itself, because if variation is happening, so 
is divergence. If divergence is not happening, then 
neither is variation. 

The importance of stasis is noted by Gould when 
he states that the “. . . cardinal and dominant fact of 
the fossil record” is that “the great majority of species 
appear with geological abruptness in the fossil record 
and then persist in stasis until their extinction.” 
(Gould 2002, p. 749) 

Strictly speaking Gould is referring to stasis as 
viewed from phenotype. It is beyond the scope of this 
paper to address the relationship between phenotype 
and genetic sequence, but I do contend that stasis 
and variation can be measured at the genetic level. 
Therefore, in this paper when I speak of variation and 
stasis, I am meaning as viewed at the genetic level. 

The inability to model simultaneous variation 
and stasis makes the random sequence model a poor 
model for DNA. But, perhaps an even more important 
problem with modeling variation as modifications to 
a random sequence of symbols is that research has 
shown that DNA is not random (Bodmer and McKie 
1995; Bradley and Thaxton 1994; Whitfield 1993). 
This has led some researchers to model DNA as a 
sentence. 

Sentence model 
Some discussions of DNA speak of it as a language 

composed of words (Bodmer and McKie 1995; Bradley  
and Thaxton 1994; Whitfield 1993). Others compare 
it directly to sentences (Dawkins 1996). So, “Is DNA 
like a sentence or a collection of sentences?”

Like the random sequence model, the sentence 
model aligns with evolution. Again, variation is 
achieved by mutating symbols in the sentence. The 
entire sentence is open to change, so it is appropriate 
to say that the essence of the sentence is evolving.

Modeling DNA as a set of sentences is superior 
to the random sequence model, because it does 
recognize that DNA is similar to written languages 
in its non-random nature. Bradley and Thaxton refer  
to this as specified complexity (Bradley and Thaxton 
1994). However, the sentence model has a number of 
problems. The most obvious problem is that natural 
language sentences cannot be fully apprehended by 
computers and used for their instruction (I will refer 
to this as machine readable). Behe shows that “life 
is based on machines—machines made of molecules” 
(Behe 1996, p. 4). It is these machines which operate 
on DNA (Behe 1996; Lester and Bohlin 1989) so 

DNA is best modeled by a language which is machine 
readable.  

We do know of machine readable languages 
(Aho, Sethi,and Ullman 1986), so this point can be 
overcome, but it does mean that arguments based 
on sentences may be false, because they are based 
on weak analogy (Bluedorn and Bluedorn 2003). A 
good example is Dawkins’ illustration of cumulative 
selection, implying that sentences with spelling 
mistakes are examples of valid steps toward new 
information (Dawkins 1996). This is not true, because 
a machine cannot recognize what was intended by the 
author. Very often a single spelling mistake is fatal 
for machine languages (Perry 1993).

This brings us to perhaps the biggest challenge 
of the sentence model. Sentences cannot, in general, 
be randomly mutated. In the sentence model, as in 
the random sequence model, variation must occur 
by mutating an existing sequence. However, the 
sentence model has the added constraint that specified 
complexity must be maintained. The problem is, as we 
noted in the introduction, that research has clearly 
shown that meaningful messages do not arise from 
random processes (Bradley and Thaxton 1994; Gitt 
2007; Spetner 1997). In fact the evidence is so strong 
that it is stated as the First Law of Information:

First Law of Information (LI1)
Information cannot originate in statistical processes. 
(Chance plus time cannot create information no 
matter how many chances or how much time is 
available.)  
There is no known law of nature, no known process, 
and no known sequence of events which can cause 
information to originate by itself in matter (Riddle 
2009, p. 202). 
The reader needs to understand that the issue 

is not just the difficulty of changing one word in a 
sentence to another, for example from “bat” to “cat,” 
and have the sentence continue to make sense with 
no spelling mistakes. The true problem that the 
first law is getting at is the meaning and intention 
of a brand new sequence of symbols (Gitt 2007). 
If I introduce a new sequence of symbols, “ahkllj,” 
what does that mean? The words “bat” and “cat” and 
every other word in the sentence only have meaning, 
because intelligent beings defined their meaning 
(Gitt 2007). 

What we find is that sentences are a poor model 
of DNA, because sentences explain variation as 
modification, but the First Law of Information tells 
us that natural processes cannot create modifications 
with specified complexity. Thus, the First Law of 
Information must be violated in order to explain 
variation, if DNA is modeled by the sentence model of 
information. The problem is even further exacerbated 
by the fact that a sentence model does nothing to 
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answer the problem of simultaneous variation and 
stasis we found with random sequences. This brings 
us to a critical decision point with respect to the 
human idea of common descent. If we cannot create 
information through natural forces then common 
descent cannot be explained either. 

At this point those who demand a naturalistic 
explanation for everything not created by man are 
stuck. Modeling variation as modifications to a 
random sequence or a set of sentences aligns so well 
with the evolutionary world view that evolutionary 
scientists have used these models unquestioningly to 
represent DNA. They have not even stopped to ask 
whether or not sequences and sentences are the most 
accurate models of information in DNA. As a result 
the evolutionary world view has actually hindered 
scientific understanding. Like their continuing quest 
for transitional forms in the fossil record, committed 
naturalists will continue to search for ways to create 
information through natural forces and ignore the 
clear signs of science rather than reconsider their 
assumption of common descent. 

On the other hand, for anyone willing to follow 
the truth when it points to the God of the Bible, 
there is a more elegant solution. It does require 
abandoning the prevailing god of common descent, 
but it leads to a model that explains rapid variation 
as well as stasis without a violation of the First Law 
of Information. More importantly it points us to the 
Intelligent Designer who has written information not 
only in biology, but also in His Word, telling us of 
His creation of organisms “according to their kinds” 
(Genesis 1).

Variables: A Biblical View of Variation
In Proverbs 4:7b the Bible says, “Though it cost all 

you have, get understanding.” To gain understanding 
in biology we must base our thinking on what the 
Bible has to say. Some theists and Intelligent Design 
proponents may try to marry human thinking with 
divine revelation by proposing that God created 
through evolution, whether from one ancestor or 
many. However, as a friend said to me when I was 
in college, “That’s not what the Bible says.” Common 
descent is the illusion that must be abandoned, not 
biblical kinds. 

As we saw in the introduction, biblical kinds 
imply bounded variation. We have also seen that 
modifications to sequences or sentences cannot 
explain variation without violating stasis and the 
First Law of Information. So the obvious question is, 
“How can we explain variation from a biblical world 
view?” The answer is variables. Variables are used 
by equations and computer programs to generate 
many different outputs without altering the equation 
or program itself. A computer program is a type of 

complex mathematical equation. It contains variables, 
but it also is machine readable. As a result computer 
programs align well with biblical revelation and are 
the model I propose for DNA. 

The computer program model
Sometimes DNA is likened to a computer program 

or a set of instructions (Palladino 2006). These 
references hint at computer programs as a model for 
DNA. However, the literature has yet to look at the 
properties that are unique to computer programs, 
as compared to random sequences or sentences, and 
what those properties might imply. 

For this paper I define the computer program 
model as the representation of DNA as a functional 
computer program where both data and instructions 
are combined in a single stream. A stream is simply 
a series of symbols of undetermined length. In 
an informal way you can think of the data as the 
variables, but in a technical sense the variable is part 
of the instructional code and the data is the value 
that will be assigned to the variable (Aho, Sethi,and 
Ullman 1986; Mansfield 2009). 

In this definition I am specifically looking at the 
highest level of abstraction of a computer program. 
Computer programs can actually be treated as data 
by other programs such as compilers, operating 
systems, and text editors, but these are levels of 
abstraction. Using abstraction, computer programs 
can also dynamically load, move and control portions 
of instruction code, called subroutines or functions, 
during execution to perform their job. It is even 
possible for computer programs to generate sections 
of programming code on the fly, turn them on and off 
and call them in different orders, but it is always a 
computational result of information at a higher level 
created by an intelligent being or beings. No matter 
how many layers of abstraction you have in a computer 
system, there is always a top level instruction set that 
controls everything below it and must be the result of 
a creative mind. 

As Gitt states, 
Computer software functions according to this 
principle, since all creative ideas like algorithms 
(methods of solution) and data structures had to be 
devised beforehand by the programmer and then 
implemented in the form of a written program. The 
various relevant parameters can be entered into 
a machine (computer) which does nothing more 
than reproduce the available information in the 
required form. Even the results obtained by means 
of AI programs (artificial intelligence; see appendix 
A2.3) are in the last instance nothing more than 
reproduced information. They may be quite complex 
and may appear to be ‘intelligent,’ but they cannot 
create information [sic] (2007, p. 112).



15Toward an Accurate Model of Variation in DNA

In the computer program model this principle 
implies that the top level of instructions is fixed and 
invariant (immutable) in accordance with the First 
Law of Information. This does not mean that the 
instructions cannot move within the stream or that 
mutations cannot cause them to degrade or fail, but 
that they cannot be modified by statistical processes 
to create a new computer program (new information) 
and they are not open to data substitution (which is 
what separates the top level instruction portion from 
the data portion of a computer program).

The key point to remember, in this discussion, is that 
a computer program does have variables, but random 
symbol sequences and sentences do not. As a result 
there is an informational structure in the computer 
program model, not found in either a random symbol 
sequence or a set of sentences, which allows variation 
without altering the fundamental essence defining 
the kind. At the sequence level this means that there 
is a construct in the model allowing machines to 
separate the entire sequence into two fundamentally 
distinct portions (even if they are subdivided and 
interleaved within the physical stream). One portion 
remains constant over all instances (members of the 
kind) and the other is open to variation (through 
data substitution). Fig. 1 shows the key distinction 
between a random symbol sequence, a sentence, and 
a computer program. 

Mansfield expresses the separation of data and 
instructions when he states 

Computers use two primary types of information: 
data and programming. Data is raw information . . . . 
Programming is a series of instructions describing 
how to manipulate data (Mansfield 2009).  

As we shall see, the separation of data from instructions 
as part of the language is what allows the computer 
program to support simultaneous variation and stasis 
while honoring the First Law of Information. 

Contrary to the random sequence model and the 
sentence model, which depend upon modifications 
to explain variation, the computer program model 
explains variation by data substitution. To get 
variation we substitute one piece of data for another 
of the same type. Different variations are created by 
combining different pieces of existing data, not by 
creating new segments of information. We can look 
at the computer program model is a type of template. 
The top level instruction portion of the stream is fixed 

and does not vary. This is the portion that holds the 
functional information common to all members of 
the kind. The data, however, can be substituted, or 
replaced, by any data of an equivalent type. This is 
because the computer program model uses variables 
while the random sequence model and the sentence 
model do not. 

To illustrate this simply, consider the equation:
a + b = c
Each variable, “a,” “b,” and “c” is like a blank that 

can be filled in with data. If we substitute data values 
for each variable we get a set of equations.

1 + 2 = 3
4 + 6 = 10
38 + 124 = 162
If you view an equation as just a sequence of symbols 

or as just a mathematical sentence you may say that 
the equation is evolving. However, if you recognize 
that there is a difference between the functionality 
(operators) and the data (operands) you will see that 
even though variation is occurring, the equation is not 
evolving. The equation is always functionally exactly 
the same. The essence of the equation remains fixed 
no matter what data is substituted into the variables. 
In fact an equation cannot evolve by altering the 
data. 

Like an equation, it is impossible to evolve a 
computer program by altering the data, because 
the instructions and data are syntactically and 
semantically separate. This is not conjecture or a 
question of probability; it is a function of the separation 
of data from instructions. The program instructions 
remain fixed, no matter what the data is. In biological 
terms, the instructions define the kind, and the data 
provides the variation. Change over time cannot alter 
this property of computer programs. This leads us to 
a proposed informational definition of biblical kinds:

Biblical Kind–The set spanned by all organisms 
having the same instructional segments and 
structural arrangements in DNA.

How the Computer Program Model 
Explains Genetics

Now that we’ve briefly defined the computer 
program model, let’s look at structures and patterns in 
biology and see how well the computer program model 
can explain these structures and patterns. Please 
note that the goal of this paper is only to introduce 

Fig. 1. A sentence can be thought of as a sequence of symbols with the additional constraint that it has specified 
complexity. Similarly, a computer program can be thought of as a sentence with the additional constraints that it 
is machine readable and has variables. The concept of variables is critical to the evolutionary question, because it 
explains why incredible variation can exist within a kind without evolution occurring. 
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computer programs and the concept of variables into 
the discussion of DNA. Because of the introductory 
nature and the limited space of the paper, the 
examples are significantly simplified. The reader will 
be helped best if they do not infer details not stated, 
but instead remember that machines use computer 
programs with variables to accomplish extremely 
complex operations every second of every day. They 
do not use random sequences or sentences. It may 
also help readers to recognize that computer science 
has whole courses dedicated to data structures, so 
the reader should not assume that the operational 
power of computer programs is limited to the basic 
illustrations in this paper. 

Mathematical patterns of inheritance
In discussing the work of Gregor Mendel, Edward 

Willett describes mathematical relationships found 
in the now famous pea plant experiments, 

As Mendel analyzed his data, patterns emerged. 
Crossing tall plants with short ones, for example, 
always produced tall plants. If the hybrid tall plants 
were allowed to self-fertilize, however, the next 
generation had about one short plant in every four. 
In the next generation after that—and in more 
generations after that—the short plants always 
produced more short plants, one-third of the tall 
plants produced only tall plants, and the remaining 
two-thirds of the plants produced both tall and short 
plants, in that same ratio of three to one . . . Mendel 
got those results with every one of the seven traits he 
chose to study (Willett 2005, p. 5). 

While the example described is only one of a 
number of mathematical patterns of inheritance that 
are observed in nature, it illustrates the point that 
variation is not simply a continuum of modifications 
to a sequence. Instead there are discrete quanta that 
govern inheritance. This argues strongly that the 
variables we use to describe heritable traits have 
a real-world analogue in DNA, and that a proper 
information model for DNA must contain variables. 
Because the computer program model uses variables, 
it is excellent at representing the mathematical 
patterns of inheritance.  

Chromosome maps
Genes map to locations

When we first look at DNA we may only notice a 
few things. If we compare the same chromosome from 
several organisms of the same kind, like the ones in 
Table 1, we may notice that they are all composed of 
4 different symbols arranged in a sequence. We may 
even notice that some portions of the sequences are 
constant across members and some are different. 
(The reader should be careful to note that different 
doesn’t mean changing. Different is only equivalent to 
changing if you assume an evolutionary world view.)

As scientists studied DNA they noticed that, “Genes 
of the same kind can be defined objectively as segments 
of DNA that occupy corresponding positions (loci; 
sing. locus) on homologous chromosomes . . . Genes 
that pair up in meiotic cell division, therefore, can 
be identified as genes of the same kind” [sic] (Parker 
2006, p. 123). This property allows scientists to map 
genes to locations on the chromosomes (Palladino 
2006). Fig. 2 shows a map of a few genes on human 
chromosome 11. 

As we continue our discussion we could use actual 
gene mappings, but that would be overly large and 
complex. Instead we will use an imaginary chromosome 
map, shown in Fig. 3, of a hypothetical plant where a 
set of traits exist on a single chromosome.  

Fig. 2. A chromosome map showing a few genes on human chromosome 11.

Table 1. Multiple variants of a simplified chromosome.

Sequence 1 TTGCACCTGCCTAACAACGAAGAAGACAA

Sequence 2 TTGCACCTGCCTAAAATCGAGGAAGACAA

Sequence 3 TTGCACCTGCCTAACAAACTAGATTTACT

Sequence 4 TTGCACCTGCCTAACAACGAAGAAGAACT

Sequence 5 TTGCACCTGCCTAAAATACTAGATTTCAA
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Computer programs express 
the chromosome map pattern

Computer programs express the chromosome map 
pattern in a number of ways. One way this pattern 
is expressed is in the form of function definitions. A 
function definition tells us how the elements of data 
map to functionality. We can take the chromosome 
map from our imaginary example and write the 
map as a function definition in computer code:
CreatePlant(Height, SeedColor, SeedShape, PodColor, PodShape);

(Function definitions can have a more complex 
syntax, but I am only showing the essential essence.) 
The function, “CreatePlant” is a set of instructions 
that operate upon five pieces of data passed into it as 
variables. The first piece of data will be interpreted as 
the plant height, the second will be interpreted as seed 
color etc. Using the function definition we can map any 
data we want to the function and get a different output 
as long as the function understands the data. That 
mapping is called a function invocation. A specific 
function invocation might look like one of the following 
sequences:
CreatePlant(tall, green, round, yellow, inflated);
CreatePlant(short, green, wrinkled, yellow, inflated);
CreatePlant(tall, yellow, round, green, constricted);

A single “CreatePlant” function can take many 
different parameters as input and create many 
different values, but it will still create a single kind of 
plant (no matter how differently it may look), because 
the kind of plant is determined by the function. 

At this point I would like to clarify a few things I 
am not saying. I am not saying that DNA is organized 
as a series of function invocations. This is simply a 
convenient way to illustrate the separation of data 
from instructions in a single line of text. I am also not 
saying that computer programs can only handle data 
in a fixed position. This is not the case. A computer 
program only needs to have a means of addressing 
the data. Finally, I am not saying that chromosome 
arrangements always remain fixed within a kind. 
Chromosome arrangements are generally stable 
within a kind, but rearrangements are found in 

nature (Lightner 2008). The main point I am trying 
to show here is that the chromosome map pattern can 
be easily explained by the computer program model, 
but this same pattern cannot be as easily explained by 
systems that do not support the concept of variables. 
I am also trying use the chromosome pattern to give 
us a foundation for understanding how the computer 
program model can explain other biological structures 
and operations, discussed in the following sections.

Parallel structures
Another way in which computer programs 

express the chromosome map pattern is in their 
use of parallel structures or arrays (Perry 1993). If 
structures are parallel it means that they share a 
common organizational definition for the data. That 
organizational definition is the map of functionality 
to location. Perhaps the most commonly understood 
parallel structure is a table. A table can help us 
understand a little about the implications of a 
chromosome map and information. 

Tables can clearly exist outside of a computer 
program, but when they do so they are not simply 
collections of sentences. By definition, tables introduce 
the concept of variables into information. Each column 
represents a variable and the collection of columns 
defines the type or kind of the table. By implication, 
the existence of a table implies that the information is 
divided into sets and is not simply a universal set. In 
an informal way we can say that each set is defined 
by the column headings and the set is spanned by all 
possible data values which can be associated with the 
columns. Each row in the table is simply a member in 
the set defined by the column headings. The rows are 
not evolving, they are simply variations of the type or 
kind defined by the table. 

Once a chromosome is mapped, we can take the 
chromosome map and begin to understand the 
organization and function of DNA sequences. Table 2 
takes the chromosome map from Fig. 3 and uses it as 
the column headings to understand the segments of 
four variations of the example chromosome. Because 

Fig. 3. An illustrative chromosome map of a hypothetical plant.
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we’re able to arrange the sequences in a tabular 
fashion we can see that each segment is most like data 
associated with a variable. (Note that each row shows 
the same basic structure as a function invocation.) 
This kind of arrangement cannot be done in general 
with random sequences or sentences.

Instruction segments
We said that the computer program model is 

a machine operable sentence which operates on 
variables. We also said that tables, by definition, 
imply the concept of variables. Therefore, if the rows 
in Table 2 are machine operable, then they can be 
modeled by the computer program model.

In the computer program model we stated that 
instructional code is invariant across all members. It 
is not open to modification, because of the First Law 
of Information. Therefore, the invariant segments are 
where we should look for instructional code. In our 
example, the instructional code is found in column 
1. (I am not saying that all chromosomes will have 
invariant segments, but that if instructional code is 
in DNA, then we expect to find invariant functional 
segments on at least one chromosome.)

The segments which vary, without a loss in 
functionality, across organisms of the same kind are 
the variables. This most typically implies genes, but 
it may imply control segments that do not necessarily 
code for proteins. As we can see, the question is not 
whether two sequences differ, but where the differences 
are occurring. If the differences only occur in data 
segments then the organism cannot be evolving. (If 
the reader thinks about it closely, they will notice that 
evolution is not occurring even if all segments have 
variant data, because the map remains constant.)

Mutations don’t result in new genes
The reader should recognize that the instruction 

segments are not simply sequences that have not yet 
mutated. The instructions in the computer program 
model are the segments which carry the operational 
information and cannot be created by natural forces. 
On the other hand, because data segments do not 
contain the highest level of operational information 
for the computer program they are not under the same 
constraint of specified complexity as instructions 

(Aho, Sethi,and Ullman 1986). Variables may carry 
data that has specified complexity. They can even 
contain elements of instructional code that can be 
moved or turned on or off (see the discussion of the 
computer program model), but variables can also 
contain random data. (Video games often use random 
numbers to create variety.) I am not implying that any 
genes in DNA are random sequences, but certainly 
random mutations result in a loss of information and 
the computer program model can account for that.  

If a variable can contain random data, then 
mutations could introduce new values for a given 
variable, but that would not be the creation of a new 
variable. You cannot simply add new symbols to a 
segment of data to create new variables. In order to 
add new variables, not only do you need new data, but 
a programmer has to modify the instructional code 
in a very intentional way to use the new data. The 
inability to create new variables is exactly what we 
find in biology as shown by Parker, 

Mutations, random changes in the genetic code, 
do produce ‘new genes’ not present at creation, but 
the so-called ‘new genes’ are still found at the same 
locus, still pair the same way in meiosis, and are still 
turned on and off by the same regulators, so they are 
really only genes of the same kind as the original, 
and represent only variation within kind (usually 
harmful variation in the case of mutations) (Parker 
2006, p. 124).
From the perspective of the computer program 

model this does not mean that genes cannot be 
moved, switched on or off or even generated in place 
to act as instructions of a control or protein encoding 
nature (see the discussion of the computer program 
model). Instead it means that, from an information 
perspective, statistical processes cannot create new 
information (variables) unaccounted for (directly or 
indirectly) in the highest level of instructions. 

Diploid pairings
The diploid pairing of homologous chromosomes 

found in biology (Lester and Bohlin 1989) can be 
viewed as a simple extension of the chromosome 
map. Not only does the chromosome map indicate 
to us the parallel nature of DNA across members 
of the same kind, it also gives us a blueprint for 

Table 2. Tabular representation of multiple variants of the illustrative chromosome with its chromosome map as the 
heading. 

Plant Creation Instructions Height Seed Color Seed Shape Pod Color Pod Shape
Sequence 1 Plant Creation Instructions tall green round yellow constricted

Sequence 2 Plant Creation Instructions short green wrinkled green constricted

Sequence 3 Plant Creation Instructions short green round yellow inflated

Sequence 4 Plant Creation Instructions tall yellow round yellow inflated
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a robust informational architecture within any 
given organism. In computer programs the pairing 
of parallel data structures is often used to store, 
compare and combine information from different 
instances of the same type. Both fault tolerance 
and adaptability, through variation within the kind, 
can be achieved through parallel data structures. If 
one member of the parallel arrangement fails, the 
system can still function if there is a second copy 
of the information not having the error. These same 
benefits can apply to biological systems if they employ 
parallel structures. 

Diploid pairings make a lot of sense in a system 
that uses computer programs, because parallelism 
(as opposed to exact duplication) is very common. In a 
system that is modeled by random symbol sequences 
or sentences we might expect to find duplicate copies 
of a given chromosome, to improve fault tolerance, but 
we’d expect those duplicates to be exact copies. Such 
systems do not have a common structure allowing 
variation within a given context, because they do not 
use variables. 

Sexual reproduction
Starting from the biblical account of the creation 

of man, we see that from only a male and female 
God’s design can produce enough variety to fill the 
earth without evolution (Genesis 1:27–28, 3:20). We 
see this same principle in the account of Noah where 
all living creatures are represented by a male and 
female of each kind (Genesis 6:17–20). If we view 
variation as mutations to an initial symbol sequence, 
be it random or one containing specified complexity, 
this may be a little hard to explain at the DNA level 
without invoking evolution. But this makes a lot of 
sense in the computer program model where DNA is 
seen as instructional code for the kind plus numerous 
variables. 

Consider the crossover of a diploid pairing as shown 
in Fig. 4 (DNA base symbols have been replaced with 
English words for the sake of readability).  

If we model DNA as a random symbol sequence then 
what is it that governs the location of the crossover? 
No one symbol is more unique than any other. If we 
model DNA as a set of sentences then crossover at 
word boundaries makes sense, but again we must ask 
the question, “Why should a word at location X in one 
chromosome have an anything to do with the word 
at location X for the second chromosome?” On the 
other hand, parallel structures in computer programs 
explain why crossover can occur without destroying 
the essential functionality of the original sequences. 

Because the structure is the same for both original 
chromosomes, even though the data is different, 
crossover during the formation of a gamete can occur 
at any of the segment junctions and the integrity of 
the program is maintained. In the computer program 
model crossover is nothing more than data substitution 
(or swapping) between like chromosomes. The effect 
is that of shuffling data while the program remains 
constant.

By substituting data from either chromosome of the 
pair we can get 32 possible gametes from this simple 
example and all of them are guaranteed to be valid 
(assuming each of the alleles are valid). We do not 
have to mutate any segment in order to get variation. 
We can almost visualize the knitting process that God 
refers to in the Psalms, “For you created my inmost 
being; you knit me together in my mother’s womb.” 
(Psalm 139:13)

Note: I am not saying that sexual reproduction from 
diploid organisms is the only form of variation that 
can be explained by the computer program model. I 
am simply illustrating one example of how common 
computer program architectures can easily explain 
what we observe in biology. 

Fig. 4. A diploid pairing before, during and after crossover.
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Variation and stasis
As we discussed in the section on the random 

sequence model, stasis is very important and is 
clearly observable in nature. Although we observe 
wide and rapid variation within organisms of a given 
kind every day, observation also shows us that every 
child is the same kind as the parent. 

From the discussion of sexual reproduction we 
can see how the computer program model supports 
simultaneous variation and stasis even though other 
models do not. Stasis is guaranteed, because the 
operational component (the instructions) does not 
vary. On the other hand, data is allowed to vary 
widely. Because each data segment has more than 
one value (or allele in biology) by definition, we 
can substitute any data segment for another of the 
same type and generate a great deal of variation 
without altering the definition of the kind at all. 
Computer programming languages very consciously 
use variables for the specific reason of supporting 
variation in output without altering the instructional 
code. By its very nature the computer program 
model solves the problem of simultaneous variation 
and stasis. 

The computer program model explains why dog 
breeders, for example, can breed dogs to get all kinds 
variety, but have never made any steps toward a 
different kind of animal. Unlike any evolutionary 
model, which sees variation as modification of the 
genetic instructions, the computer program model 
sees breeding as simply shuffling the variable values 
within the population while leaving the instructional 
segments unchanged. No matter how much you 
shuffle a deck of cards, they are still cards. The game 
is not defined by what is on the cards, but by the rules. 
You can never alter the game by shuffling cards. To 
change the game someone has to create new rules. 
The hands will vary widely by shuffling, but the game 
will remain constant, because the instructions, or 
rules, are separate from the data, or cards. 

Variation, mutation and the 
natural laws of information

Through the examples presented in this paper 
we have shown that the computer program model 
can explain variation without requiring a violation 
of the First Law of Information. This is because the 
computer program model explains variation as data 
substitution not as mutation of existing sequences. 
The instructional information and data were 
divinely created by God in the beginning (Genesis 
1) and variation occurs by random substitution of 
variable values during inheritance. Variation is not 
an alteration of the operational information through 
mutation. No new information is created. The 
computer program model explains how the biblical 

revelation of created kinds is a better explanation 
of DNA than the evolutionary idea of common 
descent. 

While the evolutionist world view sees mutations as 
the means of variation and change, the biblical world 
view sees mutations as part of the curse resulting 
from sin. (Note: In this discussion I am not classifying 
an alteration of DNA arising from healthy processes 
such as crossover as a mutation.) The Bible tells us 
that, because of Adam’s sin, the world is under a curse 
resulting in death (Genesis 3). From this we would 
expect that random natural forces could result in a 
loss of information, but not a gain. This is exactly what 
scientific research shows us regarding mutations, as 
Gitt shows when he says that, “. . . mutations can only 
cause changes in existing information. There can be 
no increase in information, and in general the results 
are injurious” (Gitt 2007, p. 126).  

Spetner echoes this same idea when he says, 
Not even one mutation has been observed that 
adds a little information to the genome. That surely 
shows that there are not the millions upon millions 
of potential mutations the theory demands. There 
may well not be any. The failure to observe even one 
mutation that adds information is more than just a 
failure to find support for the theory. It is evidence 
against the theory. We have here a serious challenge 
to neo-Darwinian theory (Spetner 1997, p. 160). 
Rather than depending on mutations as an 

explanation for variation, the computer program model 
reflects the biblical view on mutations. As discussed 
before, if you mutate data you will get a new allele, 
but you will not get new functionality. The mutation 
may be beneficial in a localized environment, but it is 
never a gain of information. In most cases randomly 
mutating data will result in impaired output or even 
failure of the program, because the instructions 
cannot find the type of data it needs. Because 
instructional code must have specified complexity, 
if you randomly mutate instructional code, you will 
not get improved functionality. At best you will get 
impaired functionality. However, even the most novice 
programmer knows that if you randomly mutate 
instructional code, the overwhelming probability is 
that the functionality will fail altogether.

Biomorphs: 
A Summary of the Issue of Variation

Perhaps the most telling illustration of the lack of 
understanding of information models, as applied to 
the question of evolution, is found in Richard Dawkins’ 
biomorphs. We can use the biomorph program to 
summarize the points we’ve been making in this 
paper. A similar type of analysis could be done for any 
simulation of biology to see what kind of information 
model it uses. 
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Biomorphs are images created by a program 
Richard Dawkins wrote to illustrate evolution. In the 
program nine genes are simulated. By varying the 
value in the genes a huge variety of images can be 
created (Dawkins 1996). What is astounding is that 
Dawkins never understood what he did and did not 
demonstrate. It’s even more astounding that eminent 
thinkers, such as Steven Hawking, have referenced 
biomorphs in their own work as illustrations of the 
power of evolution without realizing that biomorphs 
strongly illustrate the viewpoint of the biblical 
creationist not the evolutionist (Hawking 2001)!

Dawkins is rightly amazed at the variety 
produced by his program, but to equate the variety 
with molecules-to-man evolution is to totally 
misunderstand the difference between information 
models that have variables and those that do not. Each 
gene in Dawkins’ program is a variable! Variables, by 
definition, are specifically designed to allow variation 
without evolving the program. No matter what the 
appearance, every biomorph created is of the same 
kind. Biomorphs are all static, symmetric, black and 
white, stick drawings with two branches at each node 
and a varying depth of recursion. 

At least Dawkins is trying to model genes in DNA, 
but does this mean that all living organisms share 
the exact same chromosome map? All biomorphs do. 
The biomorph genome is only evolving in the sense 
that the variable values for the initial biomorph is not 
the same as the genome of any final biomorph, but 
this has everything to do with variation and nothing 
to do with common descent. Dawkins models his 
genome using the random sequence model and so it 
appears to him like evolution, because the sequence 
of symbols does not stay fixed. However, the reader 
should notice that the instructions to interpret the 
data never changes. 

From the perspective of the computer program 
model, Dawkins left something very important out 
of the genome. He left out the instructional code that 
interprets the genes. So, his model for the genome 
is incomplete. Dawkins did not illustrate evolution, 
he illustrated the incredible variety that can exist 
within a single created kind, because they have the 
exact same set of genes and instructional code. The 
meaning of each variable is not determined by the 
data, which changes, but by the instructions, which 
do not change. What each of the nine genes stands 
for was totally and completely determined by the 
programmer. Those same nine genes could have been 
interpreted as something else if Dawkins had so 
written the program. 

Dawkins speaks of “a version of the program 
that uses a few more ‘genes’ to control colour” so 
that “insects will actually cause the evolution, in 
the computer, of flowers” (Dawkins 1996, p. 63). I 

haven’t heard how that worked out for him, but the 
question is, why did he have to create a new version 
of the program to add new genes? As we have already 
discussed, mutations can give you new alleles, but not 
new genes. This is exactly the point of the discussions 
of specified complexity. You cannot randomly create 
information. This is why computer programs separate 
the instructions from the data. You can vary the data 
all you want and get very interesting results, but you 
will never get a better program by varying data. 

Later on Dawkins laments a number of 
improvements he would like to see in his program, 
“I had no means of recording their genes” (Dawkins 
1996, p. 64), and “I wanted to try to represent this 
genetic space in the form of a picture” (Dawkins 1996, 
p. 67), etc. If cumulative selection is so powerful, then 
why didn’t Dawkins use it to evolve the features 
he wanted, when he wanted them? If cumulative 
selection can create the sentence “METHINKS 
IT IS LIKE A WEASEL” in about 40 generations 
(Dawkins 1996) surely a few lines of code can be 
generated in a short time. But Dawkins’ answer to 
each of the programming problems is not to turn to 
cumulative selection and common descent, but to 
invoke a designer, because he, like any programmer, 
realizes that if you randomly mutate instruction code 
you get disaster, not a better program. 

It is important for the reader to recognize that the 
computer program model is not about a particular 
computer program that implements evolution or 
simulates biology. Instead it is a proposal that computer 
programs themselves, along with an instance of 
data, are a type of information that we can use to 
model DNA. This is what Dawkins did not see. His 
genome was simply a sequence of random values, not 
a computer program with variables. The point is not 
what any particular program can do, but whether the 
system models the genome as instructions combined 
with data in the same stream. 

Conclusion
In this paper we have seen that for a random sequence 

of symbols or a set of sentences variation occurs by 
mutating the existing sequence. This aligns with an 
evolutionary world view, but these models are not good 
models for DNA, because they cannot explain variation 
in light of stasis and the First Law of Information. On 
the other hand the computer program model explains 
variation by data substitution and forms an excellent 
model for DNA. We have seen that altering data in 
a computer program will never cause the program to 
evolve, because computer programs separate data from 
instructions by using variables. With the computer 
program model we can understand how wide variation 
can occur simultaneously with stasis and the First 
Law of Information is not violated. 
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The computer program model can also explain 
structures and patterns in DNA and leads us to a 
proposed informational definition of biblical kinds:

Biblical Kind—The set spanned by all organisms 
having the same instructional segments and 
structural arrangements in DNA.

From these findings we can conclude that equating 
externally observed differences with evolution is 
completely false, because it fails to recognize that 
variation can occur without any implication of evolution 
if the information system uses variables. A practical 
consequence is that the term “microevolution” should 
be strongly rejected along with any definition of 
evolution such as, “a process that results in heritable 
changes in a population spread over many generations” 
(Moran 1993) or “any change in the frequency of 
alleles within a gene pool from one generation to the 
next” (Curtis and Barnes 1989, p. 974). 

These terms and definitions fail to understand 
that for any system that uses variables, variation 
has nothing to do with change in kind. Therefore 
they are clearly inappropriate and hinder scientific 
investigation. To be credible, future investigations 
of DNA must incorporate an accurate model of 
information. Such a model can help baraminological 
research (the study of created kinds) by providing 
a basis for recognizing the created kinds based on 
the structure of DNA. This paper proposes that the 
computer program model is currently the best model 
of information in DNA and hopefully helps provide 
a small step toward understanding the functional 
structure of DNA. 

Because the computer program model agrees 
with the biblical record and forms a stronger basis 
for understanding biological variation than either 
a random sequence model or a sentence model, this 
paper concludes that the Bible provides a superior 
foundation for understanding variation within the 
living world. With regard to information, the Bible 
revealed to us over 3,500 years ago what we are just 
beginning to understand today. Differences in living 
organisms are constrained to variation within types 
or kinds. The biblical account even implies the most 
accurate information model, namely one that uses 
variables, if we had just known to look. 

This paper has merely introduced the possibility 
that computer programs form a good model for 
understanding DNA. Areas of future research might 
begin by considering what control structures exist 
within portions of DNA that do not code for proteins. Is 
there a direct computer program analogy for hox genes? 
Are the structural arrangements of chromosomes 
simply organizational or do they affect control flow? 
Are there local variable equivalents that might be 
affected by environment? Could some segments be 
counters, limits, or addressing mechanisms?

Now is a perfect time for computer scientists to 
begin closely investigating the structure of DNA. 
Neither the biologist nor the engineer studies and 
creates informational structures on a daily basis, so 
the input of computer scientists can be invaluable. 
Let us abandon simplistic and inaccurate models 
and move to a clearer and stronger understanding of 
God’s wondrous creation that we might give honor to 
whom honor is due.

Psalm 139:14 
I praise you because I am fearfully and wonderfully 
made; your works are wonderful, I know that full 
well.
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