
Toward an Accurate Model of
Variation in DNA

Answers Research Journal 4 (2011):11–23.
www.answersingenesis.org/arj/v4/model-variation-dna.pdf

Mitchel Soltys, Cary, NC

Abstract
Modern biology has come to realize that all life is built upon information stored within DNA. Until now,

discussions of genetic information have relied almost exclusively on models of information that do not
use variables. The result is that a scientific understanding of life is hindered, because investigations are
based on inaccurate models of biological information.

By contrast, the Bible’s description of created kinds implies an information model which uses
variables. The findings in this paper show that a model which uses variables forms a stronger basis for
true scientific understanding of biology and, by implication, the Bible provides a superior foundation
for scientific investigation. In addition, the paper is able to propose a definition of biblical kinds based
upon an information model which uses variables.

Keywords: DNA, variables, genetics, programming languages, evolution, baraminology

ISSN: 1937-9056 Copyright © 2011, 2016 Answers in Genesis, Inc. All content is owned by Answers in Genesis (“AiG”) unless otherwise indicated. AiG consents to unlimited copying and distribution of print
copies of Answers Research Journal articles for non-commercial, non-sale purposes only, provided the following conditions are met: the author of the article is clearly identified; Answers in Genesis is
acknowledged as the copyright owner; Answers Research Journal and its website, www.answersresearchjournal.org, are acknowledged as the publication source; and the integrity of the work is not
compromised in any way. For website and other electronic distribution and publication, AiG consents to republication of article abstracts with direct links to the full papers on the ARJ website. All rights
reserved. For more information write to: Answers in Genesis, PO Box 510, Hebron, KY 41048, Attn: Editor, Answers Research Journal.

The views expressed are those of the writer(s) and not necessarily those of the Answers Research Journal Editor or of Answers in Genesis.

Introduction
The fundamental issue in the debate over evolution

is whether or not the variation we see within
populations can accumulate over time to result in new
kinds of organisms. Evolutionists say yes while biblical
creationists say no. The evolutionary world view can be
seen when Travis and Reznick state, “Darwin argued
that macroevolution is just microevolution writ large,
or that the process we see and study as the cause of
microevolution will, given sufficient time, also cause
everything that we attribute to macroevolution.”
(Travis and Reznick 2009, p. 126).

However, Darwin’s argument clearly ignores the
biblical revelation of created kinds (Genesis 1:11–27)
in favor of human wisdom. As the Bible states, “They
exchanged the truth about God for a lie, and worshiped
and served created things rather than the Creator—
who is forever praised. Amen.” (Romans 1:25)

Independent of the specific mechanisms
evolutionists cite, the tie between microevolution
and macroevolution is necessarily dependent upon
the fundamental idea that “heritable differences
. . . accumulate . . . eventually giving rise to the
larger differences between species and higher taxa”
(Silvertown 2009, p. 29). This notion of accumulated
change leads to the conclusion that “All organisms
are related by common descent from a single form
of life” (Ayala 2009, p. 133). This common descent,
sometimes referred to as universal common descent, is
often pictured as a tree of life (Ayala 2009). Different
authors may give the tree slightly different shapes,
but it’s still a tree (Futuyma 1986; Ruse and Travis
2009). In contrast, the biblical kinds are sometimes
pictured as a lawn or orchard as opposed to a tree
(Patterson 2006).

For the purpose of this paper I define an evolutionist
as anyone who holds to the idea of common descent.
Note that this definition is not limited to naturalists,
but includes anyone who holds to common descent.
This can include Intelligent Design proponents and
creationists. Though evolutionists may debate the
mechanisms, they all hold to the man-made idea
that one kind of organism can change into another.
Common descent, by definition, rejects the idea that
life consists of bounded sets which cannot be bridged
by inheritance.

However, descent from a common ancestor has
never been observed. It is simply an interpretation
of externally observed differences, based on an
evolutionary world view. The biblical world view
interprets the exact same externally observed
differences as variation within unchanging kinds
and claims that evolution does not happen.

The Bible tells us in 2 Corinthians 10:5 that we
should “take captive every thought.” Proverbs 14:12
says, “There is a way that seems right to a man, but
in the end it leads to death.” I do not mean to imply
that Proverbs 14:12 is expressly about evolution,
but it is interesting that evolution is all about death
and it definitely seems right to men. Clearly the
fundamental principle in both these verses is that
man’s thinking alone cannot be trusted and must be
subjected to God’s revelation in the Bible.

When we start with the Bible as our basis for
understanding biology, we find that God created the
organisms of the world “after their kind” (Genesis 1).
That language continues in the account of the flood,
when God says, “And of every living thing of all flesh,
you shall bring two of every kind into the ark, to keep
them alive with you; they shall be male and female.

http://www.answersingenesis.org/arj/v4/model-variation-dna.pdf
http://www.answersresearchjournal.org

M. Soltys12

Of the birds after their kind, and of the animals after
their kind, of every creeping thing of the ground after
its kind, two of every kind will come to you to keep
them alive.” (Genesis 6:19–20)

If evolution is true, then kinds are only transitory
observational conveniences, because they are simply
snapshots of organisms transitioning through
history. However, the language of Genesis 1 and 6
implies that kinds are an enduring organizational
structure through which God views the life He
created. Contrary to evolutionary thinking, which
sees heritable differences as changes in the essence of
organisms, the Bible paints a picture of life composed
of bounded groups or sets called kinds, where
heritable differences are simply variations within
those kinds. One common misconception is to equate
species with biblical kinds (Milner 1990), but this is
neither biblically nor scientifically accurate. The Bible
does not describe how kinds are defined, but clearly
states that they exist and never implies evolution in
the text.

Because every word of God is true (Numbers
23:19; 2 Timothy 3:16–17) we expect DNA to be best
described by an information model which allows
variation within bounded kinds. Although existing
work has already successfully shown that meaningful
messages do not arise from random processes
(Bradley and Thaxton 1994; Gitt 2007; Riddle 2009;
Spetner 1997) and even shown that the existence of
meaningful messages implies an intelligent author
(Gitt 2007), they do not examine the question of how
different models of information explain variation and
how that variation can be bounded.

This paper examines how variation occurs within
different information models and considers their
implications with respect to both structures within the
cell and observed external differences in organisms. It
shows that without variables, variation is equivalent
to evolution, but basic scientific observations cannot
be explained. On the other hand if a system uses
variables, variation is bounded and biological
observations can be easily explained. In such systems
variation does not accumulate to result in evolution.
Thus, variation is not simply evolution limited by the
improbability of creating information through random
means. In models that use variables, variation is a
fundamentally different informational property than
evolution and leads to a proposed definition of biblical
kinds.

Modification: The Evolutionary View of Variation
The evolutionary world view sees variation as

modification. The child’s DNA is just a modification of
the parent’s DNA. This is why, when seeing nothing
more than variation in the peppered moth population,
Bernard Kettlewell, “called industrial melanism

in peppered moths ‘the most striking evolutionary
change ever actually witnessed in any organism.’”
(Wells 2002, p. 143) When it was discovered that
DNA contained “the instructions for life” (Palladino
2006) evolutionists did not question their assumption
of common descent, but simply assumed that
instructions could evolve in a way to match their a
priori assumption. The assumption that DNA is
simply a sequence of accumulated modifications is
seen in statements such as those by Michael Behe,

Evolution from a common ancestor, via changes
in DNA, is very well supported . . . scientists who
sequence human DNA . . . are actually observing
the results of a struggle that’s gone on for millennia
(Behe 2007, p. 12).
In Darwin’s Black Box Behe argues eloquently

for design in the origin of biological machines, and
notes that this understanding came as science moved
from general postulations to an accurate elucidation
of the actual structures and operations in biological
molecules (Behe 1996). Unfortunately, he does not
apply the same rigor in his thinking of information
when he speaks of sequencing DNA. Just as it was
important to look deeply into the actual structure of
molecular machines to gain real understanding, we
must go far beyond simple sequence comparisons of
DNA if we hope to have a full understanding of how
DNA functions.

Random sequence model
Virtually every discussion of DNA recognizes it as

a sequence of code symbols, so let’s begin by asking the
question, “Is DNA just a random sequence of symbols,
where nearly all sequences will be reproduced and
can compete in natural selection?”

Whether they’re aware of it or not, this is the
model used by Richard Dawkins’ biomorph program
(Dawkins 1996) and the Avida program (Lenski
et al. 2003), because both systems are designed to
allow random modification. In nearly all cases the
modifications do not affect the ability of the organism
to survive and reproduce. In this model variation
is achieved by mutating symbols in the sequence.
This model aligns with evolution, because the entire
sequence is either open to change or is common to all
sequences so it is appropriate to say that the essence
of the sequence is evolving.

The problem, from a biological perspective, is that
explaining variation as modifications to a random
sequence cannot explain simultaneous variation and
stasis. We can see this by looking at random mutations
to an arbitrary sequence as shown below.

CTTGACAGGC
CTCGATAGTC
ATCCATTCTA
Notice that divergence will happen as quickly as

13Toward an Accurate Model of Variation in DNA

variation, because they are explained by the same
mechanism. Evolutionists might claim that stasis can
be explained by natural selection favoring a specific
form for a time. This may be true, but the point
being discussed here is that simultaneous variation
and stasis cannot be explained by the information
model itself, because if variation is happening, so
is divergence. If divergence is not happening, then
neither is variation.

The importance of stasis is noted by Gould when
he states that the “. . . cardinal and dominant fact of
the fossil record” is that “the great majority of species
appear with geological abruptness in the fossil record
and then persist in stasis until their extinction.”
(Gould 2002, p. 749)

Strictly speaking Gould is referring to stasis as
viewed from phenotype. It is beyond the scope of this
paper to address the relationship between phenotype
and genetic sequence, but I do contend that stasis
and variation can be measured at the genetic level.
Therefore, in this paper when I speak of variation and
stasis, I am meaning as viewed at the genetic level.

The inability to model simultaneous variation
and stasis makes the random sequence model a poor
model for DNA. But, perhaps an even more important
problem with modeling variation as modifications to
a random sequence of symbols is that research has
shown that DNA is not random (Bodmer and McKie
1995; Bradley and Thaxton 1994; Whitfield 1993).
This has led some researchers to model DNA as a
sentence.

Sentence model
Some discussions of DNA speak of it as a language

composed of words (Bodmer and McKie 1995; Bradley
and Thaxton 1994; Whitfield 1993). Others compare
it directly to sentences (Dawkins 1996). So, “Is DNA
like a sentence or a collection of sentences?”

Like the random sequence model, the sentence
model aligns with evolution. Again, variation is
achieved by mutating symbols in the sentence. The
entire sentence is open to change, so it is appropriate
to say that the essence of the sentence is evolving.

Modeling DNA as a set of sentences is superior
to the random sequence model, because it does
recognize that DNA is similar to written languages
in its non-random nature. Bradley and Thaxton refer
to this as specified complexity (Bradley and Thaxton
1994). However, the sentence model has a number of
problems. The most obvious problem is that natural
language sentences cannot be fully apprehended by
computers and used for their instruction (I will refer
to this as machine readable). Behe shows that “life
is based on machines—machines made of molecules”
(Behe 1996, p. 4). It is these machines which operate
on DNA (Behe 1996; Lester and Bohlin 1989) so

DNA is best modeled by a language which is machine
readable.

We do know of machine readable languages
(Aho, Sethi,and Ullman 1986), so this point can be
overcome, but it does mean that arguments based
on sentences may be false, because they are based
on weak analogy (Bluedorn and Bluedorn 2003). A
good example is Dawkins’ illustration of cumulative
selection, implying that sentences with spelling
mistakes are examples of valid steps toward new
information (Dawkins 1996). This is not true, because
a machine cannot recognize what was intended by the
author. Very often a single spelling mistake is fatal
for machine languages (Perry 1993).

This brings us to perhaps the biggest challenge
of the sentence model. Sentences cannot, in general,
be randomly mutated. In the sentence model, as in
the random sequence model, variation must occur
by mutating an existing sequence. However, the
sentence model has the added constraint that specified
complexity must be maintained. The problem is, as we
noted in the introduction, that research has clearly
shown that meaningful messages do not arise from
random processes (Bradley and Thaxton 1994; Gitt
2007; Spetner 1997). In fact the evidence is so strong
that it is stated as the First Law of Information:

First Law of Information (LI1)
Information cannot originate in statistical processes.
(Chance plus time cannot create information no
matter how many chances or how much time is
available.)
There is no known law of nature, no known process,
and no known sequence of events which can cause
information to originate by itself in matter (Riddle
2009, p. 202).
The reader needs to understand that the issue

is not just the difficulty of changing one word in a
sentence to another, for example from “bat” to “cat,”
and have the sentence continue to make sense with
no spelling mistakes. The true problem that the
first law is getting at is the meaning and intention
of a brand new sequence of symbols (Gitt 2007).
If I introduce a new sequence of symbols, “ahkllj,”
what does that mean? The words “bat” and “cat” and
every other word in the sentence only have meaning,
because intelligent beings defined their meaning
(Gitt 2007).

What we find is that sentences are a poor model
of DNA, because sentences explain variation as
modification, but the First Law of Information tells
us that natural processes cannot create modifications
with specified complexity. Thus, the First Law of
Information must be violated in order to explain
variation, if DNA is modeled by the sentence model of
information. The problem is even further exacerbated
by the fact that a sentence model does nothing to

M. Soltys14

answer the problem of simultaneous variation and
stasis we found with random sequences. This brings
us to a critical decision point with respect to the
human idea of common descent. If we cannot create
information through natural forces then common
descent cannot be explained either.

At this point those who demand a naturalistic
explanation for everything not created by man are
stuck. Modeling variation as modifications to a
random sequence or a set of sentences aligns so well
with the evolutionary world view that evolutionary
scientists have used these models unquestioningly to
represent DNA. They have not even stopped to ask
whether or not sequences and sentences are the most
accurate models of information in DNA. As a result
the evolutionary world view has actually hindered
scientific understanding. Like their continuing quest
for transitional forms in the fossil record, committed
naturalists will continue to search for ways to create
information through natural forces and ignore the
clear signs of science rather than reconsider their
assumption of common descent.

On the other hand, for anyone willing to follow
the truth when it points to the God of the Bible,
there is a more elegant solution. It does require
abandoning the prevailing god of common descent,
but it leads to a model that explains rapid variation
as well as stasis without a violation of the First Law
of Information. More importantly it points us to the
Intelligent Designer who has written information not
only in biology, but also in His Word, telling us of
His creation of organisms “according to their kinds”
(Genesis 1).

Variables: A Biblical View of Variation
In Proverbs 4:7b the Bible says, “Though it cost all

you have, get understanding.” To gain understanding
in biology we must base our thinking on what the
Bible has to say. Some theists and Intelligent Design
proponents may try to marry human thinking with
divine revelation by proposing that God created
through evolution, whether from one ancestor or
many. However, as a friend said to me when I was
in college, “That’s not what the Bible says.” Common
descent is the illusion that must be abandoned, not
biblical kinds.

As we saw in the introduction, biblical kinds
imply bounded variation. We have also seen that
modifications to sequences or sentences cannot
explain variation without violating stasis and the
First Law of Information. So the obvious question is,
“How can we explain variation from a biblical world
view?” The answer is variables. Variables are used
by equations and computer programs to generate
many different outputs without altering the equation
or program itself. A computer program is a type of

complex mathematical equation. It contains variables,
but it also is machine readable. As a result computer
programs align well with biblical revelation and are
the model I propose for DNA.

The computer program model
Sometimes DNA is likened to a computer program

or a set of instructions (Palladino 2006). These
references hint at computer programs as a model for
DNA. However, the literature has yet to look at the
properties that are unique to computer programs,
as compared to random sequences or sentences, and
what those properties might imply.

For this paper I define the computer program
model as the representation of DNA as a functional
computer program where both data and instructions
are combined in a single stream. A stream is simply
a series of symbols of undetermined length. In
an informal way you can think of the data as the
variables, but in a technical sense the variable is part
of the instructional code and the data is the value
that will be assigned to the variable (Aho, Sethi,and
Ullman 1986; Mansfield 2009).

In this definition I am specifically looking at the
highest level of abstraction of a computer program.
Computer programs can actually be treated as data
by other programs such as compilers, operating
systems, and text editors, but these are levels of
abstraction. Using abstraction, computer programs
can also dynamically load, move and control portions
of instruction code, called subroutines or functions,
during execution to perform their job. It is even
possible for computer programs to generate sections
of programming code on the fly, turn them on and off
and call them in different orders, but it is always a
computational result of information at a higher level
created by an intelligent being or beings. No matter
how many layers of abstraction you have in a computer
system, there is always a top level instruction set that
controls everything below it and must be the result of
a creative mind.

As Gitt states,
Computer software functions according to this
principle, since all creative ideas like algorithms
(methods of solution) and data structures had to be
devised beforehand by the programmer and then
implemented in the form of a written program. The
various relevant parameters can be entered into
a machine (computer) which does nothing more
than reproduce the available information in the
required form. Even the results obtained by means
of AI programs (artificial intelligence; see appendix
A2.3) are in the last instance nothing more than
reproduced information. They may be quite complex
and may appear to be ‘intelligent,’ but they cannot
create information [sic] (2007, p. 112).

15Toward an Accurate Model of Variation in DNA

In the computer program model this principle
implies that the top level of instructions is fixed and
invariant (immutable) in accordance with the First
Law of Information. This does not mean that the
instructions cannot move within the stream or that
mutations cannot cause them to degrade or fail, but
that they cannot be modified by statistical processes
to create a new computer program (new information)
and they are not open to data substitution (which is
what separates the top level instruction portion from
the data portion of a computer program).

The key point to remember, in this discussion, is that
a computer program does have variables, but random
symbol sequences and sentences do not. As a result
there is an informational structure in the computer
program model, not found in either a random symbol
sequence or a set of sentences, which allows variation
without altering the fundamental essence defining
the kind. At the sequence level this means that there
is a construct in the model allowing machines to
separate the entire sequence into two fundamentally
distinct portions (even if they are subdivided and
interleaved within the physical stream). One portion
remains constant over all instances (members of the
kind) and the other is open to variation (through
data substitution). Fig. 1 shows the key distinction
between a random symbol sequence, a sentence, and
a computer program.

Mansfield expresses the separation of data and
instructions when he states

Computers use two primary types of information:
data and programming. Data is raw information
Programming is a series of instructions describing
how to manipulate data (Mansfield 2009).

As we shall see, the separation of data from instructions
as part of the language is what allows the computer
program to support simultaneous variation and stasis
while honoring the First Law of Information.

Contrary to the random sequence model and the
sentence model, which depend upon modifications
to explain variation, the computer program model
explains variation by data substitution. To get
variation we substitute one piece of data for another
of the same type. Different variations are created by
combining different pieces of existing data, not by
creating new segments of information. We can look
at the computer program model is a type of template.
The top level instruction portion of the stream is fixed

and does not vary. This is the portion that holds the
functional information common to all members of
the kind. The data, however, can be substituted, or
replaced, by any data of an equivalent type. This is
because the computer program model uses variables
while the random sequence model and the sentence
model do not.

To illustrate this simply, consider the equation:
a + b = c
Each variable, “a,” “b,” and “c” is like a blank that

can be filled in with data. If we substitute data values
for each variable we get a set of equations.

1 + 2 = 3
4 + 6 = 10
38 + 124 = 162
If you view an equation as just a sequence of symbols

or as just a mathematical sentence you may say that
the equation is evolving. However, if you recognize
that there is a difference between the functionality
(operators) and the data (operands) you will see that
even though variation is occurring, the equation is not
evolving. The equation is always functionally exactly
the same. The essence of the equation remains fixed
no matter what data is substituted into the variables.
In fact an equation cannot evolve by altering the
data.

Like an equation, it is impossible to evolve a
computer program by altering the data, because
the instructions and data are syntactically and
semantically separate. This is not conjecture or a
question of probability; it is a function of the separation
of data from instructions. The program instructions
remain fixed, no matter what the data is. In biological
terms, the instructions define the kind, and the data
provides the variation. Change over time cannot alter
this property of computer programs. This leads us to
a proposed informational definition of biblical kinds:

Biblical Kind–The set spanned by all organisms
having the same instructional segments and
structural arrangements in DNA.

How the Computer Program Model
Explains Genetics

Now that we’ve briefly defined the computer
program model, let’s look at structures and patterns in
biology and see how well the computer program model
can explain these structures and patterns. Please
note that the goal of this paper is only to introduce

Fig. 1. A sentence can be thought of as a sequence of symbols with the additional constraint that it has specified
complexity. Similarly, a computer program can be thought of as a sentence with the additional constraints that it
is machine readable and has variables. The concept of variables is critical to the evolutionary question, because it
explains why incredible variation can exist within a kind without evolution occurring.

M. Soltys16

computer programs and the concept of variables into
the discussion of DNA. Because of the introductory
nature and the limited space of the paper, the
examples are significantly simplified. The reader will
be helped best if they do not infer details not stated,
but instead remember that machines use computer
programs with variables to accomplish extremely
complex operations every second of every day. They
do not use random sequences or sentences. It may
also help readers to recognize that computer science
has whole courses dedicated to data structures, so
the reader should not assume that the operational
power of computer programs is limited to the basic
illustrations in this paper.

Mathematical patterns of inheritance
In discussing the work of Gregor Mendel, Edward

Willett describes mathematical relationships found
in the now famous pea plant experiments,

As Mendel analyzed his data, patterns emerged.
Crossing tall plants with short ones, for example,
always produced tall plants. If the hybrid tall plants
were allowed to self-fertilize, however, the next
generation had about one short plant in every four.
In the next generation after that—and in more
generations after that—the short plants always
produced more short plants, one-third of the tall
plants produced only tall plants, and the remaining
two-thirds of the plants produced both tall and short
plants, in that same ratio of three to one . . . Mendel
got those results with every one of the seven traits he
chose to study (Willett 2005, p. 5).

While the example described is only one of a
number of mathematical patterns of inheritance that
are observed in nature, it illustrates the point that
variation is not simply a continuum of modifications
to a sequence. Instead there are discrete quanta that
govern inheritance. This argues strongly that the
variables we use to describe heritable traits have
a real-world analogue in DNA, and that a proper
information model for DNA must contain variables.
Because the computer program model uses variables,
it is excellent at representing the mathematical
patterns of inheritance.

Chromosome maps
Genes map to locations

When we first look at DNA we may only notice a
few things. If we compare the same chromosome from
several organisms of the same kind, like the ones in
Table 1, we may notice that they are all composed of
4 different symbols arranged in a sequence. We may
even notice that some portions of the sequences are
constant across members and some are different.
(The reader should be careful to note that different
doesn’t mean changing. Different is only equivalent to
changing if you assume an evolutionary world view.)

As scientists studied DNA they noticed that, “Genes
of the same kind can be defined objectively as segments
of DNA that occupy corresponding positions (loci;
sing. locus) on homologous chromosomes . . . Genes
that pair up in meiotic cell division, therefore, can
be identified as genes of the same kind” [sic] (Parker
2006, p. 123). This property allows scientists to map
genes to locations on the chromosomes (Palladino
2006). Fig. 2 shows a map of a few genes on human
chromosome 11.

As we continue our discussion we could use actual
gene mappings, but that would be overly large and
complex. Instead we will use an imaginary chromosome
map, shown in Fig. 3, of a hypothetical plant where a
set of traits exist on a single chromosome.

Fig. 2. A chromosome map showing a few genes on human chromosome 11.

Table 1. Multiple variants of a simplified chromosome.

Sequence 1 TTGCACCTGCCTAACAACGAAGAAGACAA

Sequence 2 TTGCACCTGCCTAAAATCGAGGAAGACAA

Sequence 3 TTGCACCTGCCTAACAAACTAGATTTACT

Sequence 4 TTGCACCTGCCTAACAACGAAGAAGAACT

Sequence 5 TTGCACCTGCCTAAAATACTAGATTTCAA

17Toward an Accurate Model of Variation in DNA

Computer programs express
the chromosome map pattern

Computer programs express the chromosome map
pattern in a number of ways. One way this pattern
is expressed is in the form of function definitions. A
function definition tells us how the elements of data
map to functionality. We can take the chromosome
map from our imaginary example and write the
map as a function definition in computer code:
CreatePlant(Height, SeedColor, SeedShape, PodColor, PodShape);

(Function definitions can have a more complex
syntax, but I am only showing the essential essence.)
The function, “CreatePlant” is a set of instructions
that operate upon five pieces of data passed into it as
variables. The first piece of data will be interpreted as
the plant height, the second will be interpreted as seed
color etc. Using the function definition we can map any
data we want to the function and get a different output
as long as the function understands the data. That
mapping is called a function invocation. A specific
function invocation might look like one of the following
sequences:
CreatePlant(tall, green, round, yellow, inflated);
CreatePlant(short, green, wrinkled, yellow, inflated);
CreatePlant(tall, yellow, round, green, constricted);

A single “CreatePlant” function can take many
different parameters as input and create many
different values, but it will still create a single kind of
plant (no matter how differently it may look), because
the kind of plant is determined by the function.

At this point I would like to clarify a few things I
am not saying. I am not saying that DNA is organized
as a series of function invocations. This is simply a
convenient way to illustrate the separation of data
from instructions in a single line of text. I am also not
saying that computer programs can only handle data
in a fixed position. This is not the case. A computer
program only needs to have a means of addressing
the data. Finally, I am not saying that chromosome
arrangements always remain fixed within a kind.
Chromosome arrangements are generally stable
within a kind, but rearrangements are found in

nature (Lightner 2008). The main point I am trying
to show here is that the chromosome map pattern can
be easily explained by the computer program model,
but this same pattern cannot be as easily explained by
systems that do not support the concept of variables.
I am also trying use the chromosome pattern to give
us a foundation for understanding how the computer
program model can explain other biological structures
and operations, discussed in the following sections.

Parallel structures
Another way in which computer programs

express the chromosome map pattern is in their
use of parallel structures or arrays (Perry 1993). If
structures are parallel it means that they share a
common organizational definition for the data. That
organizational definition is the map of functionality
to location. Perhaps the most commonly understood
parallel structure is a table. A table can help us
understand a little about the implications of a
chromosome map and information.

Tables can clearly exist outside of a computer
program, but when they do so they are not simply
collections of sentences. By definition, tables introduce
the concept of variables into information. Each column
represents a variable and the collection of columns
defines the type or kind of the table. By implication,
the existence of a table implies that the information is
divided into sets and is not simply a universal set. In
an informal way we can say that each set is defined
by the column headings and the set is spanned by all
possible data values which can be associated with the
columns. Each row in the table is simply a member in
the set defined by the column headings. The rows are
not evolving, they are simply variations of the type or
kind defined by the table.

Once a chromosome is mapped, we can take the
chromosome map and begin to understand the
organization and function of DNA sequences. Table 2
takes the chromosome map from Fig. 3 and uses it as
the column headings to understand the segments of
four variations of the example chromosome. Because

Fig. 3. An illustrative chromosome map of a hypothetical plant.

M. Soltys18

we’re able to arrange the sequences in a tabular
fashion we can see that each segment is most like data
associated with a variable. (Note that each row shows
the same basic structure as a function invocation.)
This kind of arrangement cannot be done in general
with random sequences or sentences.

Instruction segments
We said that the computer program model is

a machine operable sentence which operates on
variables. We also said that tables, by definition,
imply the concept of variables. Therefore, if the rows
in Table 2 are machine operable, then they can be
modeled by the computer program model.

In the computer program model we stated that
instructional code is invariant across all members. It
is not open to modification, because of the First Law
of Information. Therefore, the invariant segments are
where we should look for instructional code. In our
example, the instructional code is found in column
1. (I am not saying that all chromosomes will have
invariant segments, but that if instructional code is
in DNA, then we expect to find invariant functional
segments on at least one chromosome.)

The segments which vary, without a loss in
functionality, across organisms of the same kind are
the variables. This most typically implies genes, but
it may imply control segments that do not necessarily
code for proteins. As we can see, the question is not
whether two sequences differ, but where the differences
are occurring. If the differences only occur in data
segments then the organism cannot be evolving. (If
the reader thinks about it closely, they will notice that
evolution is not occurring even if all segments have
variant data, because the map remains constant.)

Mutations don’t result in new genes
The reader should recognize that the instruction

segments are not simply sequences that have not yet
mutated. The instructions in the computer program
model are the segments which carry the operational
information and cannot be created by natural forces.
On the other hand, because data segments do not
contain the highest level of operational information
for the computer program they are not under the same
constraint of specified complexity as instructions

(Aho, Sethi,and Ullman 1986). Variables may carry
data that has specified complexity. They can even
contain elements of instructional code that can be
moved or turned on or off (see the discussion of the
computer program model), but variables can also
contain random data. (Video games often use random
numbers to create variety.) I am not implying that any
genes in DNA are random sequences, but certainly
random mutations result in a loss of information and
the computer program model can account for that.

If a variable can contain random data, then
mutations could introduce new values for a given
variable, but that would not be the creation of a new
variable. You cannot simply add new symbols to a
segment of data to create new variables. In order to
add new variables, not only do you need new data, but
a programmer has to modify the instructional code
in a very intentional way to use the new data. The
inability to create new variables is exactly what we
find in biology as shown by Parker,

Mutations, random changes in the genetic code,
do produce ‘new genes’ not present at creation, but
the so-called ‘new genes’ are still found at the same
locus, still pair the same way in meiosis, and are still
turned on and off by the same regulators, so they are
really only genes of the same kind as the original,
and represent only variation within kind (usually
harmful variation in the case of mutations) (Parker
2006, p. 124).
From the perspective of the computer program

model this does not mean that genes cannot be
moved, switched on or off or even generated in place
to act as instructions of a control or protein encoding
nature (see the discussion of the computer program
model). Instead it means that, from an information
perspective, statistical processes cannot create new
information (variables) unaccounted for (directly or
indirectly) in the highest level of instructions.

Diploid pairings
The diploid pairing of homologous chromosomes

found in biology (Lester and Bohlin 1989) can be
viewed as a simple extension of the chromosome
map. Not only does the chromosome map indicate
to us the parallel nature of DNA across members
of the same kind, it also gives us a blueprint for

Table 2. Tabular representation of multiple variants of the illustrative chromosome with its chromosome map as the
heading.

Plant Creation Instructions Height Seed Color Seed Shape Pod Color Pod Shape
Sequence 1 Plant Creation Instructions tall green round yellow constricted

Sequence 2 Plant Creation Instructions short green wrinkled green constricted

Sequence 3 Plant Creation Instructions short green round yellow inflated

Sequence 4 Plant Creation Instructions tall yellow round yellow inflated

19Toward an Accurate Model of Variation in DNA

a robust informational architecture within any
given organism. In computer programs the pairing
of parallel data structures is often used to store,
compare and combine information from different
instances of the same type. Both fault tolerance
and adaptability, through variation within the kind,
can be achieved through parallel data structures. If
one member of the parallel arrangement fails, the
system can still function if there is a second copy
of the information not having the error. These same
benefits can apply to biological systems if they employ
parallel structures.

Diploid pairings make a lot of sense in a system
that uses computer programs, because parallelism
(as opposed to exact duplication) is very common. In a
system that is modeled by random symbol sequences
or sentences we might expect to find duplicate copies
of a given chromosome, to improve fault tolerance, but
we’d expect those duplicates to be exact copies. Such
systems do not have a common structure allowing
variation within a given context, because they do not
use variables.

Sexual reproduction
Starting from the biblical account of the creation

of man, we see that from only a male and female
God’s design can produce enough variety to fill the
earth without evolution (Genesis 1:27–28, 3:20). We
see this same principle in the account of Noah where
all living creatures are represented by a male and
female of each kind (Genesis 6:17–20). If we view
variation as mutations to an initial symbol sequence,
be it random or one containing specified complexity,
this may be a little hard to explain at the DNA level
without invoking evolution. But this makes a lot of
sense in the computer program model where DNA is
seen as instructional code for the kind plus numerous
variables.

Consider the crossover of a diploid pairing as shown
in Fig. 4 (DNA base symbols have been replaced with
English words for the sake of readability).

If we model DNA as a random symbol sequence then
what is it that governs the location of the crossover?
No one symbol is more unique than any other. If we
model DNA as a set of sentences then crossover at
word boundaries makes sense, but again we must ask
the question, “Why should a word at location X in one
chromosome have an anything to do with the word
at location X for the second chromosome?” On the
other hand, parallel structures in computer programs
explain why crossover can occur without destroying
the essential functionality of the original sequences.

Because the structure is the same for both original
chromosomes, even though the data is different,
crossover during the formation of a gamete can occur
at any of the segment junctions and the integrity of
the program is maintained. In the computer program
model crossover is nothing more than data substitution
(or swapping) between like chromosomes. The effect
is that of shuffling data while the program remains
constant.

By substituting data from either chromosome of the
pair we can get 32 possible gametes from this simple
example and all of them are guaranteed to be valid
(assuming each of the alleles are valid). We do not
have to mutate any segment in order to get variation.
We can almost visualize the knitting process that God
refers to in the Psalms, “For you created my inmost
being; you knit me together in my mother’s womb.”
(Psalm 139:13)

Note: I am not saying that sexual reproduction from
diploid organisms is the only form of variation that
can be explained by the computer program model. I
am simply illustrating one example of how common
computer program architectures can easily explain
what we observe in biology.

Fig. 4. A diploid pairing before, during and after crossover.

M. Soltys20

Variation and stasis
As we discussed in the section on the random

sequence model, stasis is very important and is
clearly observable in nature. Although we observe
wide and rapid variation within organisms of a given
kind every day, observation also shows us that every
child is the same kind as the parent.

From the discussion of sexual reproduction we
can see how the computer program model supports
simultaneous variation and stasis even though other
models do not. Stasis is guaranteed, because the
operational component (the instructions) does not
vary. On the other hand, data is allowed to vary
widely. Because each data segment has more than
one value (or allele in biology) by definition, we
can substitute any data segment for another of the
same type and generate a great deal of variation
without altering the definition of the kind at all.
Computer programming languages very consciously
use variables for the specific reason of supporting
variation in output without altering the instructional
code. By its very nature the computer program
model solves the problem of simultaneous variation
and stasis.

The computer program model explains why dog
breeders, for example, can breed dogs to get all kinds
variety, but have never made any steps toward a
different kind of animal. Unlike any evolutionary
model, which sees variation as modification of the
genetic instructions, the computer program model
sees breeding as simply shuffling the variable values
within the population while leaving the instructional
segments unchanged. No matter how much you
shuffle a deck of cards, they are still cards. The game
is not defined by what is on the cards, but by the rules.
You can never alter the game by shuffling cards. To
change the game someone has to create new rules.
The hands will vary widely by shuffling, but the game
will remain constant, because the instructions, or
rules, are separate from the data, or cards.

Variation, mutation and the
natural laws of information

Through the examples presented in this paper
we have shown that the computer program model
can explain variation without requiring a violation
of the First Law of Information. This is because the
computer program model explains variation as data
substitution not as mutation of existing sequences.
The instructional information and data were
divinely created by God in the beginning (Genesis
1) and variation occurs by random substitution of
variable values during inheritance. Variation is not
an alteration of the operational information through
mutation. No new information is created. The
computer program model explains how the biblical

revelation of created kinds is a better explanation
of DNA than the evolutionary idea of common
descent.

While the evolutionist world view sees mutations as
the means of variation and change, the biblical world
view sees mutations as part of the curse resulting
from sin. (Note: In this discussion I am not classifying
an alteration of DNA arising from healthy processes
such as crossover as a mutation.) The Bible tells us
that, because of Adam’s sin, the world is under a curse
resulting in death (Genesis 3). From this we would
expect that random natural forces could result in a
loss of information, but not a gain. This is exactly what
scientific research shows us regarding mutations, as
Gitt shows when he says that, “. . . mutations can only
cause changes in existing information. There can be
no increase in information, and in general the results
are injurious” (Gitt 2007, p. 126).

Spetner echoes this same idea when he says,
Not even one mutation has been observed that
adds a little information to the genome. That surely
shows that there are not the millions upon millions
of potential mutations the theory demands. There
may well not be any. The failure to observe even one
mutation that adds information is more than just a
failure to find support for the theory. It is evidence
against the theory. We have here a serious challenge
to neo-Darwinian theory (Spetner 1997, p. 160).
Rather than depending on mutations as an

explanation for variation, the computer program model
reflects the biblical view on mutations. As discussed
before, if you mutate data you will get a new allele,
but you will not get new functionality. The mutation
may be beneficial in a localized environment, but it is
never a gain of information. In most cases randomly
mutating data will result in impaired output or even
failure of the program, because the instructions
cannot find the type of data it needs. Because
instructional code must have specified complexity,
if you randomly mutate instructional code, you will
not get improved functionality. At best you will get
impaired functionality. However, even the most novice
programmer knows that if you randomly mutate
instructional code, the overwhelming probability is
that the functionality will fail altogether.

Biomorphs:
A Summary of the Issue of Variation

Perhaps the most telling illustration of the lack of
understanding of information models, as applied to
the question of evolution, is found in Richard Dawkins’
biomorphs. We can use the biomorph program to
summarize the points we’ve been making in this
paper. A similar type of analysis could be done for any
simulation of biology to see what kind of information
model it uses.

21Toward an Accurate Model of Variation in DNA

Biomorphs are images created by a program
Richard Dawkins wrote to illustrate evolution. In the
program nine genes are simulated. By varying the
value in the genes a huge variety of images can be
created (Dawkins 1996). What is astounding is that
Dawkins never understood what he did and did not
demonstrate. It’s even more astounding that eminent
thinkers, such as Steven Hawking, have referenced
biomorphs in their own work as illustrations of the
power of evolution without realizing that biomorphs
strongly illustrate the viewpoint of the biblical
creationist not the evolutionist (Hawking 2001)!

Dawkins is rightly amazed at the variety
produced by his program, but to equate the variety
with molecules-to-man evolution is to totally
misunderstand the difference between information
models that have variables and those that do not. Each
gene in Dawkins’ program is a variable! Variables, by
definition, are specifically designed to allow variation
without evolving the program. No matter what the
appearance, every biomorph created is of the same
kind. Biomorphs are all static, symmetric, black and
white, stick drawings with two branches at each node
and a varying depth of recursion.

At least Dawkins is trying to model genes in DNA,
but does this mean that all living organisms share
the exact same chromosome map? All biomorphs do.
The biomorph genome is only evolving in the sense
that the variable values for the initial biomorph is not
the same as the genome of any final biomorph, but
this has everything to do with variation and nothing
to do with common descent. Dawkins models his
genome using the random sequence model and so it
appears to him like evolution, because the sequence
of symbols does not stay fixed. However, the reader
should notice that the instructions to interpret the
data never changes.

From the perspective of the computer program
model, Dawkins left something very important out
of the genome. He left out the instructional code that
interprets the genes. So, his model for the genome
is incomplete. Dawkins did not illustrate evolution,
he illustrated the incredible variety that can exist
within a single created kind, because they have the
exact same set of genes and instructional code. The
meaning of each variable is not determined by the
data, which changes, but by the instructions, which
do not change. What each of the nine genes stands
for was totally and completely determined by the
programmer. Those same nine genes could have been
interpreted as something else if Dawkins had so
written the program.

Dawkins speaks of “a version of the program
that uses a few more ‘genes’ to control colour” so
that “insects will actually cause the evolution, in
the computer, of flowers” (Dawkins 1996, p. 63). I

haven’t heard how that worked out for him, but the
question is, why did he have to create a new version
of the program to add new genes? As we have already
discussed, mutations can give you new alleles, but not
new genes. This is exactly the point of the discussions
of specified complexity. You cannot randomly create
information. This is why computer programs separate
the instructions from the data. You can vary the data
all you want and get very interesting results, but you
will never get a better program by varying data.

Later on Dawkins laments a number of
improvements he would like to see in his program,
“I had no means of recording their genes” (Dawkins
1996, p. 64), and “I wanted to try to represent this
genetic space in the form of a picture” (Dawkins 1996,
p. 67), etc. If cumulative selection is so powerful, then
why didn’t Dawkins use it to evolve the features
he wanted, when he wanted them? If cumulative
selection can create the sentence “METHINKS
IT IS LIKE A WEASEL” in about 40 generations
(Dawkins 1996) surely a few lines of code can be
generated in a short time. But Dawkins’ answer to
each of the programming problems is not to turn to
cumulative selection and common descent, but to
invoke a designer, because he, like any programmer,
realizes that if you randomly mutate instruction code
you get disaster, not a better program.

It is important for the reader to recognize that the
computer program model is not about a particular
computer program that implements evolution or
simulates biology. Instead it is a proposal that computer
programs themselves, along with an instance of
data, are a type of information that we can use to
model DNA. This is what Dawkins did not see. His
genome was simply a sequence of random values, not
a computer program with variables. The point is not
what any particular program can do, but whether the
system models the genome as instructions combined
with data in the same stream.

Conclusion
In this paper we have seen that for a random sequence

of symbols or a set of sentences variation occurs by
mutating the existing sequence. This aligns with an
evolutionary world view, but these models are not good
models for DNA, because they cannot explain variation
in light of stasis and the First Law of Information. On
the other hand the computer program model explains
variation by data substitution and forms an excellent
model for DNA. We have seen that altering data in
a computer program will never cause the program to
evolve, because computer programs separate data from
instructions by using variables. With the computer
program model we can understand how wide variation
can occur simultaneously with stasis and the First
Law of Information is not violated.

M. Soltys22

The computer program model can also explain
structures and patterns in DNA and leads us to a
proposed informational definition of biblical kinds:

Biblical Kind—The set spanned by all organisms
having the same instructional segments and
structural arrangements in DNA.

From these findings we can conclude that equating
externally observed differences with evolution is
completely false, because it fails to recognize that
variation can occur without any implication of evolution
if the information system uses variables. A practical
consequence is that the term “microevolution” should
be strongly rejected along with any definition of
evolution such as, “a process that results in heritable
changes in a population spread over many generations”
(Moran 1993) or “any change in the frequency of
alleles within a gene pool from one generation to the
next” (Curtis and Barnes 1989, p. 974).

These terms and definitions fail to understand
that for any system that uses variables, variation
has nothing to do with change in kind. Therefore
they are clearly inappropriate and hinder scientific
investigation. To be credible, future investigations
of DNA must incorporate an accurate model of
information. Such a model can help baraminological
research (the study of created kinds) by providing
a basis for recognizing the created kinds based on
the structure of DNA. This paper proposes that the
computer program model is currently the best model
of information in DNA and hopefully helps provide
a small step toward understanding the functional
structure of DNA.

Because the computer program model agrees
with the biblical record and forms a stronger basis
for understanding biological variation than either
a random sequence model or a sentence model, this
paper concludes that the Bible provides a superior
foundation for understanding variation within the
living world. With regard to information, the Bible
revealed to us over 3,500 years ago what we are just
beginning to understand today. Differences in living
organisms are constrained to variation within types
or kinds. The biblical account even implies the most
accurate information model, namely one that uses
variables, if we had just known to look.

This paper has merely introduced the possibility
that computer programs form a good model for
understanding DNA. Areas of future research might
begin by considering what control structures exist
within portions of DNA that do not code for proteins. Is
there a direct computer program analogy for hox genes?
Are the structural arrangements of chromosomes
simply organizational or do they affect control flow?
Are there local variable equivalents that might be
affected by environment? Could some segments be
counters, limits, or addressing mechanisms?

Now is a perfect time for computer scientists to
begin closely investigating the structure of DNA.
Neither the biologist nor the engineer studies and
creates informational structures on a daily basis, so
the input of computer scientists can be invaluable.
Let us abandon simplistic and inaccurate models
and move to a clearer and stronger understanding of
God’s wondrous creation that we might give honor to
whom honor is due.

Psalm 139:14
I praise you because I am fearfully and wonderfully
made; your works are wonderful, I know that full
well.

References
Aho, A. V., R. Sethi, and J. D. Ullman. 1986. Compilers:

Principles, techniques, and tools. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Ayala, F. J. 2009. Molecular evolution. In Evolution the first
four billion years, eds. M. Ruse and J. Travis. Cambridge,
Massachusetts: The Belknap Press of Harvard University
Press.

Behe. M. J. 1996. Darwin’s black box: The biochemical
challenge to evolution. New York: The Free Press.

Behe. M. J. 2007. The edge of evolution: The search for the
limits of Darwinism . New York: The Free Press.

Bluedorn, N. and H. Bluedorn. 2003. The fallacy detective:
Thirty-six lessons on how to recognize bad reasoning, 2nd
ed. Muscatine, Iowa: Christian Logic.

Bodmer, W. and R. McKie. 1995. The book of man: The human
genome project and the quest to discover our genetic heritage.
New York: Scribner.

Bradley, W. L. and C. B. Thaxton. 1994. Information & the
Origin of Life. In The creation hypothesis: Scientific
evidence for an intelligent designer, ed. J. P. Moreland.
Downers Grove, Illinois: InterVarsity Press.

Curtis, H. and N. S. Barnes. 1989. Biology, 5th ed. p. 974 . New
York: Worth Publishers.

Dawkins, R. 1996. The blind watchmaker: Why the evidence
of evolution reveals a universe without design. New York:
W. W. Norton & Co.

Futuyma, D. J. 1986. Evolutionary biology, 2nd ed. Sunderland,
Massachusetts: Sinauer Associates.

Gitt, W. 2007. In the beginning was information: A scientist
explains the incredible design in nature. Green Forest,
Arkansas: Master Books.

Gould, S. J. 2002. The structure of evolutionary theory.
Cambridge, Massachusetts: The Belknap Press of Harvard
University Press.

Hawking, S. 2001. Our future? Star trek or not?: How biological
and electronic life will go on developing in complexity at
an ever-increasing rate. In The universe in a nutshell,
pp. 155–171. New York: Bantam Books.

Lenski, R. E., C. Ofria, R. T. Pennock, and C. Adami. 2003.
The evolutionary origin of complex features. Nature 423,
no. 6936:139–144.

Lester, L. P., and Bohlin, R. G. 1989. The natural limits to
biological change, 2nd ed. Dallas, Texas: Probe Books.

Lightner, J. K. 2008. Karyotype variability within the
cattle monobaramin. Answers Research Journal

23Toward an Accurate Model of Variation in DNA

1:77–88. Retrieved from, http://www.answersingenesis.org/
articles/arj/v1/n1/karyotype-variability-cattle on February
12, 2011.

Mansfield, R. 2009. Programming: A beginner’s guide. New
York: McGraw Hill.

Milner, R. 1990. The encyclopedia of evolution: Humanity’s
search for its origins. New York, New York: Facts On File.

Moran, L. 1993. What is evolution? Retrieved from, http://
www.talkorigins.org/faqs/evolution-definition.html on
November 21, 2010.

Palladino, M. A. 2006. Understanding the human genome
project, 2nd ed. San Francisco: Benjamin Cummings.

Parker, G. 2006. Darwin and biologic change. In Creation facts
of life, pp. 75–147. Green Forest, Arkansas: Master Books.

Patterson, R. 2006. Evolution exposed: Your evolution answer
book for the classroom. Hebron, Kentucky: Answers in
Genesis.

Perry, G. 1993. Absolute beginner’s guide to programming.
Carmel, Indiana: Sams Publishing.

Riddle, M. 2009. Information: Evidence for a creator? In The
New Answers Book 2, ed. K. Ham, pp. 195–206. Green
Forest, Arkansas: Master Books.

Ruse, M. and J. Travis, eds. 2009. Evolution the first four
billion years. Cambridge, Massachusetts: The Belknap
Press of Harvard University Press.

Silvertown, J. 2009. 99% APE: How evolution adds up.
Chicago: The University of Chicago Press.

Spetner, L. 1997. Not by chance: Shattering the modern theory
of evolution. Brooklyn, New York: The Judaica Press.

Travis, J. and D. N. Reznick. 2009. Adaptation. In Evolution
the first four billion years, eds. M. Ruse and J. Travis.
Cambridge, Massachusetts: The Belknap Press of Harvard
University Press.

Wells, J. 2002. Icons of evolution: Science or myth?: Why much
of what we teach about evolution is wrong. Washington,
DC: Regnery Publishing.

Whitfield, P. 1993. From so simple a beginning: The book of
evolution. New York: Macmillan.

Willett, E. 2005. Genetics demystified. New York: McGraw-
Hill.

24

