
Significant Distinction: A Proposed Metric for an Objective
Measurement of Instructional Information, and Its Inference

from Functional Complexity
Peter Rankin, 11398 Highway 76 W, Laurens, South Carolina 29360

ISSN: 1937-9056 Copyright © 2025 Answers in Genesis, Inc. All content is owned by Answers in Genesis (“AiG”) unless otherwise indicated. AiG consents to unlimited copying and distribution
of print copies of Answers Research Journal articles for non-commercial, non-sale purposes only, provided the following conditions are met: the author of the article is clearly identified; Answers
in Genesis is acknowledged as the copyright owner; Answers Research Journal and its website, www.answersresearchjournal.org, are acknowledged as the publication source; and the integrity of
the work is not compromised in any way. For website and other electronic distribution and publication, AiG consents to republication of article abstracts with direct links to the full papers on the
ARJ website. All rights reserved. For more information write to: Answers in Genesis, PO Box 510, Hebron, KY 41048, Attn: Editor, Answers Research Journal.
The views expressed are those of the writer(s) and not necessarily those of the Answers Research Journal Editor or of Answers in Genesis.

Answers Research Journal 18 (2025): 290–323.
https://assets.answersresearchjournal.org/doc/v18/signification_distinction.pdf

Abstract
How can we objectively distinguish between the prose of a monkey’s banging on a keyboard versus

the poetry of Longfellow? Does a 30-minute 100-megabyte video of kittens playing with a ball of yarn
truly contain a thousand times more information than the plain text of a highly intelligent book that takes
up less than 0.1% of the same disk space on a computer? Or is there a metric which can more accurately
compare the two? How should we measure for repetition and redundancy within a message? This
article explores the concept of “significant distinction” as an objective measure of information which
aligns closely with our intuition. Significance refers to the data’s representation of something outside
itself, such as a set of instructions for building a piece of functional equipment. Distinction refers to the
degree to which the data is not internally redundant. The conjunction of the two attributes is the metric
called significant distinction, or its information content under the definition here, when applied to data.
Using the same principle, a reasonable method for inferring information from the functional complexity
of the end product is given. It is then compared against other concepts, such as Shannon information,
Kolmogorov complexity, specified complexity, and coded information systems theory. Possible
applications are considered, including arguing for a young and specially created human genome.

Keywords: information; information theory; DNA; genetic entropy

Introduction
In the first century, Paul the apostle discussed

the meaningful communication of information
in 1 Corinthians 14. He stressed two critical
attributes: distinction, or clear differences within the
communication of a message (for example, verse 7,
“except they give a distinction in the sounds”); and
significance, or the symbolic nature of a message (for
example, verse 10, “There are, it may be, so many
kinds of voices in the world, and none of them is
without signification”). The conjunction of these two
attributes, when fleshed out more fully, provides a
new metric for measuring the information content of
a message. In many cases, this metric can be quite
objective, especially when the end (or purpose) of the
data is objective.

One common criticism from evolutionists is
that creationists do not have a clear and objective
definition of what we mean by “information.” The
purpose here is to explore significant distinction as
another objective measurement of information which
quantifies our meaning in a specific sense, a sense
which is common and intuitive. Other metrics within
information theory do exist. Here is a summary of
some popular ones:
• Shannon information measures the level of

“randomness” (or entropy) in a data source. It
was created to find ways of communicating the
same data with less transmission by picking up on
patterns in the sender. For example, in English,
the letter “e” appears most frequently, and so it
should not require as much space in data to send
as a less common letter. Combinations like “th”

and “sh” are also very common, thus having lower
Shannon information.

• Kolmogorov complexity, or algorithmic
complexity, is a theoretical measure of the
shortest computer program capable of generating
the data in question. This means that some data
sets seemingly very complex, such as images of
fractals, contain remarkably little Kolmogorov
complexity.

• Specified complexity has been described by
William Dembski as the difference between
the Shannon information of the data and the
Kolmogorov complexity of its description (Dembski
2024, under “Specified Complexity as a Unified
Information Measure,” paragraph 6, beginning
with “With Ewert’s lead”). “Specificity” means the
simplicity in describing the data, and “complexity”
basically means improbability, or Shannon
information. For example, a highly improbable set
of DNA instructions which produces something
with a very simple description, like “flagellar
motor,” would have high specified complexity per
Dembski’s metric.

• Werner Gitt’s definition consists of five “layers”
of information: statistics (for example, number
of letters, their frequencies, etc.), syntax (for
example, how letters are allowed to be joined
together), semantics (the meanings represented
by the symbols in the text), pragmatics (how the
message is to be carried out practically), and
apobetics (purpose, meaning, teleology). (Gitt
2000, 50–82, chapter 4, “The Five Levels of the
Information Concept”).

292 Peter Rankin

•	 Coded Information Systems (CIS) treats the
coded message as part of a broader system. The
metric is concerned with how much the system’s
behavior is refined to attain a goal as the result
of the coded message and its interpretation.
Not only the coded message, but also the design
details of the system itself, can contribute to the
measurement of information under this metric.
The new metric proposed here borrows from

existing discussions and metrics. For example,
creationists have long discussed the idea of “meaning”
in data, which is essentially our term “significance.”
Creationists have also stressed that there is a
difference between the highly ordered yet simple
patterns which sometimes form spontaneously
in nature (such as patterns in mineral crystals or
snowflakes) and the complex information found
in DNA; this consideration is similar to our term
“distinction.”

If we abstract the concepts of “significance” and
“distinction,” we can apply the underlying principles
not only to data, but to physical systems themselves;
we will call this “functional complexity.” Functional
complexity is the sum of all the details of a physical
system which contribute to the carrying out of its
function, such as, for example, all the intricate
physical components of a car engine which aid in its
ability to turn the driveshaft. It is the analog, in the
physical realm, of significant distinction in the realm
of data.

This discussion has three parts. First, we will define
and illustrate the concept of significant distinction.
Second, we will discuss how to infer the existence
of significant distinction in a set of instructions (the
coded message) by analyzing the functional
complexity of the resulting physical system. For
example, we can infer that there exists much
information (significant distinction) in a dragonfly’s
DNA by analyzing the functional complexity of the
resulting insect. Third, we will compare this metric
of significant distinction with several popular
metrics, both in information theory and in creationist
discussions more broadly. The goal is to provide an
objective metric for the intuitive sense of the term
“information” which can then be incorporated into
broader arguments, including, for example, the
evidence that DNA has a Creator, the objectivity of
the decay of genetic content in this fallen world, and
by extension, the evidence of its recent creation.

Defining Significant Distinction
The definition of this proposed metric is as follows:
Information content can be measured as distinct
data significant to some end.
This definition hinges on two key concepts:

(1) significance and (2) distinction. The former

is a philosophical concept requiring abstract
conceptual terminology and discussion, the latter
is mathematical. The former can be detected only
through mental activity, the latter through statistical
computation. The former requires an identified end
outside of the message, while the latter analyzes only
the message itself. Both steps are needed for this
metric, the philosophical and the mathematical.

For example, suppose that you have a furniture
assembly booklet. Reading it, you recognize its end
(that is, “purpose,” broadly speaking), which is to
direct the building of a desk for writing. How would
you measure its significant distinction toward that
end? First, you would mark all the text in the booklet
which aids in building the writing desk in some way.
For example, you can exclude the legal disclaimers,
other things like the table of contents, etc.; because
although they may be significant in other ways, they
do not help you build the desk (the end product).
This is how you would measure raw significant data.
Next, you would account for repetition or redundancy
in the remaining data to determine the amount of
uniqueness, or distinction. The result is the amount
of information you have detected under this metric;
that is, the amount of significant and distinct data.
Consider the following illustrations:
•	 Insignificant indistinction:

“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA”
(This text carries no meaning and thus lacks
significance; and since all the letters are the same,
there is no distinction or variety.)

•	 Significant indistinction (relative):
(Sports fan) “Go Tigers! Go Tigers! Go Tigers! . . .”
(These cheers are significant relative to the fans
and to the team; yet it is mostly repetitive, and so
it has little distinction.)

•	 Insignificant distinction:
“cSxeWuYDbX xXP LfibUzvOR; bCmSGFpG
wyMQQklqRT, ROGNuD, . . .”
(This text was generated randomly and has no
significance or meaning; however, it contains
almost no pattern, and thus it has extremely high
distinction.)

•	 Significant distinction:
“I shot an arrow into the air, It fell to earth, I
knew not where . . .”
(This text has meaning in English and is significant;
it also is non-repetitive, except for repetitions of
syntax, and thus it has a high level of distinction.)

Basic definitions
Before defining significance and distinction more

precisely, we should define a few preliminary terms.
First, by “detail” is meant any physical property of
a system. Details about a desk include its weight,

293Significant Distinction

width, length, height, materials, color, the types
of joints between the pieces, and so on. Details can
be very broad, such as the size of the desk relative
to the room; or very narrow, such as the position
of individual fibers of wood in a panel, or even the
position of each molecule in the desk.

By “data,” we mean sequential digital data; that is,
a sequential series of definite integers or symbols. On
a computer, everything is numeric at its foundation
and is ultimately a series of simple bits (0 and 1). If
you type a sentence on the computer, each letter is
stored as a number in an 8-bit “byte” (or multiple
bytes) which correlate to that letter. We can do
something similar for any language with a definite
alphabet, because we can map each symbol to its own
integer. For instance, we could decide to map A = 1,
B = 2, etc.

By “serialization,” we mean the process of
converting physical details into data. For example,
when you measure a desk and write down its
specifications, you are serializing the physical details
of the desk into written data. (More broadly, this
is called “quantification;” but our purpose is more
precise, since we desire a serial string of numbers,
as we will see.) Detail refers to the raw physical
properties, such as the literal length of a desk, while
data refers to the representation of this length as a
sequence of integers or letters.

Distinguishing detail from data is important for
a few reasons. First, raw details (or properties) can
be represented as symbols in a variety of ways. You
could describe the length of a desk as “4 ft 1 in” or
“49 in,” and both would mean the same thing. We
could use English or metric measurements (inches vs.
centimeters) or use Spanish or Japanese. Computers
have different ways of storing numbers with decimal
places. Precisely the same detail could be represented
in many different ways in data. Second, data can
represent detail in a kind of terse “shorthand” if the
receiver knows what the terms mean. Third, data
can meaningfully symbolize non-physical concepts,
including emotion and spiritual matters. Thus,
distinguishing between data and detail is important
for our purposes.

Additionally, we should distinguish between the
data and the communication channel. English text
can be communicated via an e-mail on a computer,
on a letter written in cursive with a fountain pen, or
over a radio broadcast, for example. In each case, the
same digital English data is being communicated,
only over different channels.

By the term “end,” we mean that toward which
something is working. (Since the section on
“significance” is conceptual or philosophical, we
use these words in a conceptual sense, consistent
with standard dictionary definitions, and not in a

technical engineering sense.) “End” is like the term
“purpose,” except that it does not necessarily imply
intelligent intent, which allows us to use our metric
in an argument demonstrating intelligent intent
without having to circularly assume it beforehand.
One of the ends of the DNA of a dragonfly is to give
its wings the ability to propel it through the air, as
an example. The “product” is built to achieve the end
(such as the wings, nerves, etc.). For instance, if you
look at the blueprints of a car engine, the “end” is to
turn a driveshaft, while the “product” is the engine
itself. In this case, the end is very simple (rotation of
a shaft), while the product is highly complex (all the
varied components of the engine to accomplish this
end).

Significance
Next, we come to defining the two core concepts,

significance and distinction. The first, significance, is
the philosophical and conceptual side of the metric,
and it requires mental activity. Significance cannot
be measured using computation and statistical
features of the data alone. To infer significance, first,
we must identify an appropriate “end” for the data.
For instance, studying the blueprints of a car engine,
with sufficient knowledge, we can recognize that
its end is to turn a driveshaft. Once we identify the
end, we can mark all data which contributes in some
way toward that end, or all the data which helps in
turning the driveshaft. For our purpose, we do not
care about the “degree” of significance; we simply
place all significant data into a set.

Notice that before we can apply our metric at all,
we must recognize an appropriate end of the data
upfront. Measuring information (specifically, the
“significance” portion) in our intuitive sense here
can never be done by looking at the data in complete
isolation. Paul stresses this point (1 Corinthians
14:11): “Therefore if I know not the meaning of the
voice, I shall be unto him that speaketh a barbarian,
and he that speaketh shall be a barbarian unto me.” In
“Information, Genetics and Entropy,” Barrios (2015)
stresses the need of the observer to understand the
code to infer semantic value, or meaning, indicating
that semantic value cannot be inferred from a data
set in complete isolation, which agrees with Paul’s
point. Further, the objectivity of our measure is
therefore limited by the objectivity of the identified
end; in cases like beauty and art, it is likely that
these are presently far too subjective for our metric.
Other times, we may not adequately recognize the
significance of the data (Daniel 12:4; 1 Peter 1:11).

However, although our goal here is not to argue
the philosophy of value or ultimate meaning as
such, we should note that functional ends are quite
clear and uncontroversial. Microbiology has made

294 Peter Rankin

it clear that DNA is significant to the survival of
an organism. Survival and reproduction are very
simple and objective ends that even evolutionists
will acknowledge as having value in their theory;
and thus, so are all subordinate ends, such as the
organism’s ability to see, hear, move, and digest. As a
result, all DNA which contributes toward these ends
is significant in that respect, and we can apply our
metric.

Further, we need not circularly assume intelligent
intent to have a valid “end” of the data (we use the
words “goal” or “purpose” as synonyms only in the
loose sense of these terms). As Dembski (2025, under
“5 A Note About Targets” [in submission]) notes in
his paper “The Law of Conservation of Information:
Natural Processes Only Redistribute Existing
Information,” a “target” (essentially the same basic
concept as the term “end” used here) does not require
the assumption of purpose; targets can be natural
or neutral, such as with functionality; and Dembski
notes that even prominent evolutionists refer to
the same concept from a naturalistic standpoint.
Function is a particularly good candidate as an end
(or target) against which we can objectively measure
significant distinction for our purposes here as well.

As a practical example, consider a chapter in a
construction book about concrete foundation footers,
written in English. You know the language, and you
also know something of construction; and so with
relative ease, you identify the end of this data, which
is to create a strong platform to support a structure.
Thus, all data in this chapter which contributes to
the strength of the foundation is significant to that
end. If the foundation will be weaker without rebar,
then the data concerning rebar is significant; and
if the way the concrete is allowed to cure affects its
strength, then it is significant, too.

It is impossible to prove the absence of significance
in data. Again, Paul makes the point that if he
does not know the meaning of a language, to him,
it sounds like gibberish (1 Corinthians 14:10–11).
Something might sound like gibberish and yet be
perfectly understood by another person who knows
the language. Similarly, the events of our lives
often seem very chaotic and without significance;
but we know that if we love God, He is working all
these things together for our good (Romans 8:28;
Proverbs 16:33). In general, we cannot say that a
data set has no significance unless we know that the
ultimate source is truly random. While information
often leaves a mathematical signature in the data
(for example, traces of detectable patterns found in
English text), this is merely the shadow, and not the
substance, of information.

In summary, with objective ends (like turning
a driveshaft), our metric can also be objective. The

way alterations to the engine affect its torque and
overall performance is often a rather simple matter.
While we may not be able to exhaustively identify
all information, we can identify much of it; and the
metric here allows for incremental detection.

Literal vs. symbolic data
There is a critical distinction that we need to

make for our purposes, which is between literal and
symbolic data. Put simply, data is symbolic when it
is full of symbols to things outside itself. It is literal
when the pieces of data reference each other in
mathematical or visual “webs” of interconnectivity.
Failure to make this distinction can result, for
instance, in unrealistically optimistic expectations
regarding the ability of matter, via the varied
environments and laws of chemistry, to self-organize
into “networks” to form life and information (see
Cronin and Walker 2016).

For example, in ASCII art, people “draw pictures”
using only the letters and symbols on the keyboard
with a monospace font (where every character is the
same width). People can be very creative within these
limitations. For an illustration of an elephant using
only ASCII characters, please see fig. 1.

What is the value of this data? It is in the literal
way that the symbols appear in physical proximity
to each other when printed on a page or screen. For
instance, the letter “a” was chosen as the elephant’s
eye because it looks visually like an eye with an eyelid
in that font; and this character was surrounded by
spaces because of the visual effect; and the positions
of the various lines and marks have to do with how
they literally work together to produce the visual
picture of an elephant. The two-dimensional shape
mimics the physical shape of the elephant rather
than using symbolic representation. The pieces of
data are strongly self-referential. This is a good
example of what we mean by literal data.

Fig. 1. ASCII art elephant. Art by Joan G. Stark. https://
www.asciiart.eu/animals/elephants.

295Significant Distinction

By contrast, symbolic data is full of symbols to
things outside itself. Werner Gitt (2000, 85) limits
the domain of information to those systems dealing
with abstract references to reality (that is, coded
messages, or symbols), as opposed to observations
of reality which are direct. For example, consider
the word “elephant.” This word is not used for any
literal similarity between the letters and the animal.
The letters are combined merely as a symbol which
stands for the concept. The term “significance”
includes the idea of symbol, especially in the more
classical use of the word, where to “signify” meant
to stand for something outside itself. In semiotics,
the terms “signifier” and “signified” are still used
in this sense. Thus, in a shallow sense, the concept
of “significance” can be as simple as the meaning of
an individual word in isolation (such as “elephant”
standing for the animal); but this same idea of
significance, in a deeper sense, can refer to the way
in which words, put together, help further the end
goal. For instance, the message “Feed the elephant
a handful of peanuts for obedience” can have deeper
significance to the zookeepers to the extent that it
furthers the elephants’ obedience, thus promoting
the overall success of the zoo. Language allows such
symbols to be joined in complex relationships to
reference real-world objects and concepts.

Data can be literal or symbolic to varying degrees.
While the ASCII art is mostly literal, there is a sense
in which you could say that it stands for the elephant
by visual analogy when taken as a whole, even as
opposed to an exact photograph, and is thus at least
a little symbolic. Some words are onomatopoeic,
meaning that they are chosen for sounding like the
things they stand for, and are thus slightly literal (for
example, “sizzle” or “zoom”). Typically, data is either
almost entirely symbolic, or almost entirely literal.
Our definition of “significance” assumes symbolic
data, and thus excludes literal data from consideration
(for example, we exclude images of fractals, or
the elephant ASCII drawing). This difference will
become important later in distinguishing our metric
from Kolmogorov complexity.

Distinction
The second key concept in this proposed metric

is distinction. While the first part, significance,
is conceptual and philosophical, the second part,
distinction, is entirely mathematical. Distinction
is the uniqueness of the data, or its lack of internal
repetition; that is, the non-repetitiveness of the letter
patterns in the text. When all data being analyzed
has already been identified as significant (per the
mental, philosophical method above), then the level
of distinction correlates to the information density
of the significant text. It is an entirely intrinsic

measurement, distinguishing it from classic Shannon
information, which is based on the probabilities of
the source which generates it. For our purposes, we
do not need to know the probability distribution of
the source or the general statistics of the language.
We need only the message itself to measure its
distinction. (Measurements are meaningful over full-
length messages, rather than over small, isolated
pieces of text.)

To calculate the distinction of the message, we
iterate through each character (the “cursor”) and
determine its distinction, measured in bits. The
distinction of the message is the sum for all individual
characters, as seen in eq. 1.

where
i = the 1-based cursor position of the character under
consideration. For the first letter in the message,
i = 1, etc.
m = the total message length.
F(i) = the expectation fraction for that cursor position.
(We will discuss how to calculate this next.)

That is, for each cursor character (at position i), we
convert an expectation fraction (F(i)) into distinction
bits by using the negative log, base 2, to get
distinction in bits. This will look familiar compared
with Shannon information, except that we are not
dealing with probabilities in that sense, but only with
the patterns intrinsic to the message itself.

To calculate the cursor expectation fraction F(i),
we must take any applicable prefixes into account for
each cursor character (position). A prefix is simply
the text that comes immediately before the cursor
character being considered. Let a given prefix length
be notated with the variable j (that is, with a two-
letter prefix, j = 2). We need to calculate the prefix
target fraction (t), which is the ratio of times a given
prefix results in the same letter as the cursor. For
example, if half the times s occurs in a message, it
is followed by the cursor letter h, then the prefix
fraction will be roughly 0.5 (1/2). This prefix target
fraction (the variable t) is calculated using eq. 2.

where
x = the number of other prefix matches (or, the
number of other times this prefix occurs and is also
followed by the cursor character). For instance, if the
cursor is a [SPACE] character, and the prefix under
consideration is “the” (j = 3), then x is the number of
other times the text “the” occurs within the message,
while also followed by a [SPACE].
y = the number of other prefix occurrences which do

()()2
1

log
m

i
d F i

=

= −∑ (eq. 1)

1
1

xt
x y

+
=

+ +
(eq. 2)

296 Peter Rankin

not match the cursor, or in our example, the number
of times “the” is found in the message while being
followed by some character other than [SPACE].

In eq. 2, we include the cursor instance itself in the
calculation (hence the +1 in both the numerator and
denominator) to get the prefix fraction.

Next, we must calculate a “certainty fraction” (c)
for the prefix under consideration. Roughly, the more
a prefix match is likely to occur by “chance” alone (to
use the term loosely), the less the certainty fraction.
Patterns are less special the more “likely” they are.
We calculate this certainty fraction c using eq. 3.

where
a = the character distribution fraction of the cursor.
For example, if the cursor character is E, and if there
are 5 Es in the message, and the message’s length
is 79 characters total, then a = 5/79 for that cursor
character.
x, y = the number of other prefix matches/non-matches
(see notes on eq. 2).

The odds of a single other prefix matching the
cursor by “chance” (loosely using the term) is simply
the value a, since that is the frequency of the cursor
character relative to the other characters in the
message. The odds of a single prefix not matching
is the inverse, (1–a). The odds of a given particular
constellation of matches/non-matches is therefore
ax· (1–a)y. However, there are many different ways
we could arrange these matches and non-matches
(permutations), which is what the factorial portion is
considering. For all combinations of whole numbers
(x, y) where x + y = z, the sum of the probabilities
calculated here is exactly 1; or put another way, the
probabilities are divided across all possibilities of
matches/non-matches, with some more or less likely.
Again, we use the term “probability” loosely, referring
really to the patterns within the message contents.

To calculate the cursor expectation fraction F(i),
we use the iterative equation; see eq. 4. Let n be the
maximum applicable prefix length for the cursor
(discussed below); the cursor’s expectation fraction
will be the iterative result of eq. 4, where j = n. This
iterative approach also quantifies the intuition that
the longer a pattern continues, the more “specific”
it gets, the stronger the pattern, and the lower the
distinction going forward.

where
j = the prefix length under consideration.
fj–1 = the expectation fraction so far; that is, the result
of the previous iteration.

tj = the target prefix fraction calculated in eq. 2, for
prefix length j.
cj = the prefix certainty fraction calculated in eq. 3, for
prefix length j.

We begin with j = 0 (no prefix) and increment j,
terminating when either of these conditions is true:
1.	We terminate if the prefix contains no patterns

in the next character which follows it. This is
because we seek to measure redundancy. For
example, suppose the prefix is “the;” there must
be at least two instances of this prefix which are
followed by the same character (they don’t have to
be consecutive). If the prefix results in something
different every time, then there is no pattern to
measure.

2.	We terminate if this is the first prefix “match”
(the first time this prefix has resulted in the
same character as the cursor). We must measure
the internal distinction of all content, including
patterns the first time they occur; only in
subsequent repetitions does it make sense to
factor them in as redundancies. The exception is
if “tj < fj–1;” in which case, we do factor this prefix
in, because it is an “outlier” in the prefix pattern.
This means the other prefix occurrences will have
reduced distinction for repetition; and so, we should
factor in the rarity of this prefix occurrence (just
as we assign greater distinction to rare individual
characters relative to common ones).
To see an example using the text of John 1:1,

please refer to Appendix B, which details the
measurement of select letters for illustration. It is
interesting to compare different languages of the
same translated text. For instance, John chapter
3 (the entire chapter) measures at 7,325.6 bits of
distinction in English, 6,645.4 bits in Greek, and
6,082.3 bits in Latin (all caps). This is an average
of 1.81 bits per character in English, 0.99 in Greek,
and 1.79 in Latin. For calculation results using this
computer program over various texts, including
chapters or small books of the Bible, as well as
random binary and hexadecimal data, see Appendix
C. For the PHP computer program which measured
these distinctions programmatically, see Appendix
A. Appendix D contains quantitative comparisons of
short sample texts among four metrics suitable for
such comparison.

Under this definition, we can note a couple of
interesting things that may happen when combining
multiple messages into one. It is likely that
combining message A and message B will yield a
total distinction which is less than the sum of their
individual distinctions when taken separately. For
example, the string “abcdefg” has a total distinction
of 19.65 (2.81 per character). The string “bcdefg”
has a total distinction of 15.51 (2.58 per character).

()!1 (1)
! !

x y x yc a a
x y
+

= − ⋅ − ⋅ (eq. 3)

1 1 0() ,j j j j jf f f t c f a− −= − − ⋅ = (eq. 4)

297Significant Distinction

Yet when combining them into a single string
(“abcdefgbcdefg”), the total distinction is 22.8 (1.75
per character), which is less than the combined
distinction of each string taken alone. This is because
the internal repetition is increased with the shared
data between these two strings.

However, it is also possible for the total distinction of
messages to be greater than the sum of each message
taken separately. As an example, the string “aaaaa”
has 0 distinction, as does “bbbbb.” But combining
them (“aaaaabbbbb”) yields a distinction of 6.80 (0.68
per character). This actually aligns with our intuition.
On the one hand, if you have heard instructions
before, a repetition adds little to the “information” of
the message. On the other hand, having to constantly
switch contexts (such as switching between English
and Latin constantly in older texts) would be more
mentally taxing, having a higher degree of distinction.
Generally, in such cases, Latin (for example) is
italicized to set it apart from the English, making it
more predictable and easier to read.

Consider the letter ‘A’ repeated a million times in
a row. Although this is a relatively large amount of
data, it has no variety or distinction. If we increase
the repetition from a million to a trillion (a million
million), although we have increased the amount
of raw data a millionfold, we have increased the
distinction by nothing. On the other hand, truly
random data would have very high distinction, with
little pattern.

Information contained in raw (uncompressed)
intelligent messages generally falls between these
two extremes, containing a decent level of distinction,
but also a lot of repetition. (While this is a practical
reality in real-world information, it is not an essential
characteristic for our purpose.) If you text your friend,
“I will be there in fine minutes,” your friend knows
that you meant “five minutes;” but this would not be
possible if the message were maximally compressed.
For instance, if you used numbers instead of spelling
out the word and wrote, “I will be there in 6 minutes,”
your friend would not know for sure whether you
made a mistake or meant to send a precise time.
The presence of redundancy is one safeguard against
miscommunication, and natural languages make
heavy use of it.

For reference, Genesis chapter 1 has about 4.9
kilobits of distinction, with an average distinction
of about 1.19 bits per character. John chapter 3 has
about 7.3 kilobits, with 1.8 bits per character. Both
passages were measured using sentence casing, no
verse numbers, with paragraphs. Genesis 1 contains
more redundancy than John chapter 3, or less relative
distinction given its length.

Also, when we speak of distinction, we are not
referring to Kolmogorov complexity. (For reference,

Kolmogorov complexity is measured by the shortest
computer program which can generate the text.) For
instance, a picture of the Mandelbrot set has a high
degree of visual complexity and yet can be generated
with relatively simple computer instructions.
However, these considerations do not apply in our
case, because we require data which is full of symbols
to things outside itself to be “significant.” While each
pixel stands for the result of the calculation at those
coordinates, the data is still interconnected in a
mathematical “web,” related by literal mathematical
and visual relationships. However, symbolic data does
not work this way. For example, consider the word
“car” in English. You have assigned integers to each
letter: A = 1, B = 2, etc. If you were to mathematically
modulate this word by adding 1 to each letter, that
would translate as: c-to-d, a-to-b, r-to-s; and so
“car” + 1 (adding one to each letter) becomes “dbs.”
Any meaning of the new symbol would not be because
of their mathematical connections. That works only
with literal data.

Unwrapping data
When we measure significant distinction, it is

against data in its “unwrapped” state. Data can be
wrapped in layers of encoding and representation,
but our concern is only with the final data which
is intrinsically symbolic of things outside itself. In
other words, when we say “significance,” we imply
immediate extra-data significance; and thus, by
our definition, we exclude all data wrapping from
consideration. We care only about the heart of the
data, which is immediately symbolic of things outside
itself.

For example, suppose you have reserved a table
at a restaurant, and your parents are on their way,
and your mother sends you a text message, “Almost
there, 5 minutes.” That’s 23 bytes of raw data (a byte
is 8 bits; a bit is either a 0 or a 1), if encoded in UTF-8
(for illustration; UTF-8 is a way of encoding letters
into bytes). Now suppose instead of sending this text
message, she sends you an audio file in the chat with
2 seconds of recorded length where she says the same
thing. For simplicity, let’s assume a relatively high-
quality MP3 recording, with a data rate that remains
constant at 128 kbps (128 kilobits per second, or
128,000 bits of data per second of audio). At 2
seconds, that is 256 kilobits, or 32,000 bytes. This
is over 1,300 times the size of the text, and yet they
both communicate the same sentence. Intuitively, we
know that the MP3 does not contain over a thousand
times more information than the text; and this is due
to data wrapping. The MP3 may include additional
data such as tone of voice and background noise,
but these things extend beyond the realm of our
discussion, which is with strictly digital and objective

298 Peter Rankin

data significant toward a definite end (in our case,
English text meant to inform).

In this example, the English text “Almost there, 5
minutes” is transmitted as an analog signal, wrapped
further in digital representation:

Wrap Layer 2: Digital MP3 (31 kilobytes, 256k
bits / (8 * 1024))
Wrap Layer 1: Analog audio
Raw Data: Digital English text (23 bytes)
Significant distinction is always measured in

relation to data in its fully unwrapped state relative
to its end. The same concept as the MP3 would apply
to video files and pictures. A video of kittens playing
with a ball of yarn has much less information than
a book written by Einstein, even if the book, in text
format, is less than 0.1% the file size. Both audio and
video recordings are essentially analog, even if they
are wrapped digitally. (How the brain interprets such
analog data into digital signals is likely inaccessible
to us, placing it out of reach of more objective
measurements of significant distinction.) No matter
how many layers data is wrapped in, our concern is
with the fully unwrapped data itself, in this case, in
the form of digital English text.

As another example, security video footage contains
much data, but it cannot be measured for information
content unless an extra-data end is identified, beyond
the mere preservation of the video files themselves.
But if video footage becomes important in solving
a case of bank robbery, then the unwrapped digital
data that specifically helped in this case becomes
significant to that end; but to measure its significant
distinction, it must be unwrapped from its encoding
as video, which can be somewhat subjective. One
way to do this would be to describe the significant
details of the video in a written language; that is, “At
4:21pm, a masked man 6 ft2 in tall walks through
the front door holding a gun . . .”, etc. Historical video
recordings may contain meaning of a sort, but we
cannot apply our metric until an end transcending
the data is first identified. Otherwise, it does not fall
within the domain of significant distinction.

Content vs. profit
We should note that the measure of information

content is different from a measure of its profit (or
value). If you have a bucket of sand, you can measure
it by its volume, or you can measure it by its weight
and density relative to other materials. Information
is a different kind of entity, and our measure is
analogous to volume in some ways; but we also factor
in distinction, which is analogous to density or weight.
But there is another key aspect to information which
is outside our measure, which is profitability.

For example, Don Batten gives the example that
the sentence “She has an automobile” contains 21

characters; yet so does the phrase, “Sue has a red
Porsche” (Batten 2017, under “Some thoughts about
‘new information’”). The second sentence, however,
is much more specific; and thus, it conveys more
“information” in a sense, if we are talking about profit.
This is because the purpose of these statements is to
increase knowledge; and in the realm of knowledge
acquisition, in this case, the specific is more valuable
than the general. A detective also tends to value the
specific over the general, as he must find out who
robbed the bank or pulled the trigger. Yet sometimes,
the general is more valuable, such as saying, “Every
household in this subdivision has two automobiles,”
which is more general yet applies more broadly, thus
increasing the amount of “information” transmitted
in a more concise way than listing each house in the
subdivision one by one.

The measure of profit is highly subjective to the
receiver. Suppose you lived in the year 1920 and
heard, “Bob has purchased a new Model T.” This
might sound quite specific to us living today, but in
1920, about half the cars in America were Model Ts,
and so it is not all that specific. If later, you heard that
Bob had purchased a “black” Model T, that would add
almost no informational value, because the Model
Ts produced at that time were all black. When the
end of information is to increase knowledge, then the
measure of profitability, and even of specificity, are
highly subjective to the receiver’s assumptions, and
not strictly based on the raw nature of the facts being
conveyed.

The point, however, is that significant distinction
is a measure of information content, and not of
information profit. The information structure found
in the DNA molecule, for example, utilizes such a
dense and highly profitable language that it must
greatly surpass English text in its profitability; but
such determinations are outside our scope here. We
are dealing only with the parts of DNA which are
interpreted sequentially, or as one digital character
after the other. (It does not matter if it is left-to-right,
right-to-left, or any other direction; it matters only
that the letters are processed in sequence, one after
the other.) Any additional considerations, such as the
parts of DNA facilitating dynamic 3D folding, when
they are not necessarily interpreted sequentially by
the cell, likely contain additional sorts of information
which transcend our measure here.

Application to functional complexity
While significance and distinction can apply

to data, the concepts, when abstracted, can also
apply to physical details of existing systems. This
allows us to reasonably infer a minimum amount of
significant distinction (instructional information) in
the underlying code which generates the systems.

299Significant Distinction

The usefulness of this will be discussed later.
Functional complexity can be seen as the analog

in the physical realm of significant distinction in the
realm of data. (This analogy parallels the comparison
between “detail” and “data” made earlier.) We can
define functional complexity as the sum total of the
distinct details of a physical system which contribute
toward it carrying out a particular end (or function).
For example, the functional complexity of an engine
includes all the details of the physical engine which
aid it in turning the driveshaft.

Applying these concepts to functional complexity
requires some abstraction in the ideas of “significance”
and “distinction,” however. With physical systems,
we are no longer speaking of symbol, and so we
must use the term “significance” in a broader, more
general sense if we wish to apply the same basic
concept. Details are “significant” to the function (in
this more abstract sense) if they contribute toward
the performance of that function (or end). For
instance, if you look carefully at a car engine and
figure out how it works, even if you do not have a
blueprint, you can infer that a great many details
are “significant” to the engine’s proper running. You
could measure the diameter of the pistons and then
run experiments, either in reality or possibly using
knowledge of chemistry and physics equations, to
determine the range of acceptable tolerances before
the engine’s performance degrades. The precision of
tolerance, starting with the current actual diameter,
gives us the specification for a significant detail about
the engine.

We can also measure the distinction of physical
systems. However, this is more subjective and
requires us to recognize physical repetitions or
patterns, and to serialize them accordingly, so that
these patterns will be detected and accounted for.
For instance, putting significance aside for a moment
and speaking only of distinction, you could infer
that the distinction of the shape of well-ordered ice
crystals is very low compared with water before
it freezes, because with well-ordered crystals, the
molecules generally follow a repeating pattern. In
Cronin and Walker’s Assembly Theory, for instance,
since identical building blocks can be reused in this
case and given the physical constraints of the low
temperature which naturally forms these building
blocks, the ice crystals would require little selection
(Sharma et. al. 2023). Snowflakes contain more
distinction, but even then, most of their beauty is
from the repetition of the patterns; and thus, they
have far less distinction than the random position of
water molecules before the crystals formed. On the
other hand, the individual grains of a pile of sand
poured onto a table have a great deal of distinction
under this definition, since each grain has its own

orientation and position, and with little pattern.
However, we should note that they are similar in
respect to all being grains of sand, and the distinction
is limited only to their individually unique shapes
and orientations. This is like Assembly Theory’s
emphasis on whether individual building blocks are
highly reusable.

Thus, we can apply the underlying concept of
significant distinction either to details or to data.
It is more objective when applied to data. When in
relation to physical details, we will call this concept
“complexity” and when in relation to data, we will
call this “information.” These definitions align
closely with the general distinctive use of each word
in everyday speech: complexity is to a car engine as
information is to a blueprint. When referring to how
a mousetrap works, we speak of complexity, whether
little or much; but when we speak of the instructions
for building a mousetrap, we speak of information,
whether little or much.

Inferring instructional information from
functional complexity

It is highly reasonable to infer a minimum level of
instructional information from functional complexity.
The complexity of a firefly implies a great deal of
information in the DNA. Yet we must subtract
external contributive preexisting complexities (part
of the surrounding environment), which we will look
at in a moment.

This does not work for ends which are themselves
representations of digital data. For instance, to use
our previous example, this does not work with pictures
generated by a Mandelbrot set function. In this case,
the complexity is far greater than the instructional
information, but the end is data-bound; that is, the
end is in the data itself. With functional ends, this
is not applicable. While we can get emergent visual
complexity from a simple mathematical formula
(the Mandelbrot picture), we cannot get emergent
functional complexity in that way. This needs more
research and thought, but there are likely two main
reasons.

First, functional requirements in the real world
are rather simple. To make an abstract argument,
to produce extreme functionality from simple
information (as with the Mandelbrot set), it would
require the surrounding context of the functioning
system to be a sort of “inverse” of this mathematically
emergent complexity; in which case, the resulting
functionality would fit its surroundings as a hand fits
into a glove. Both environment and machine would be
based on relatively simple mathematical principles,
merely as inversions of each other. However, this
does not seem to be the way the real world is set up;
and if it were in some case, we could probably detect

300 Peter Rankin

it without too much difficulty. For instance, for a
dragonfly’s wing (and all that goes into it, such as the
nervous system, muscles, etc.) to propel it forward,
it must do so in an air space which is, at best, of
soup-like consistency, and at worst, very chaotic. The
functional complexity of its wings simply cannot be
mathematically emergent, because the consistency of
the air cannot be so, in that way.

Second and related, functionally complex machines
(such as car engines) are not strongly patterned the
way that the Mandelbrot data is. If we analyze the
Mandelbrot images, we will see a lot of repetitions,
variations, and inversions of the same basic shapes.
With functional complexity in the real world, we can
reasonably rule out emergent mathematics from its
lack of these kinds of patterns.

Thus, it is reasonable to infer a minimum
level of instructional information by taking the
functional complexity of the object and subtracting
any contributive complexity. Royal Truman, in his
theory of Coded Information Systems (CIS) goes
into great depth on preexisting resources and other
considerations which supplement the coded message
itself (Truman 2012). One example of contributive
complexity is that of the agents carrying out the
instructions, to the extent it is used. For example, if
the instructions are, “Make a kitchen table of X width
and length,” because the carpenter already has a lot
of knowledge gained by making past tables, these
simple instructions rely on this inherent contributive
complexity in the carpenter’s skillset. In general,
if the agents are intelligent (for example, human
factory workers), creativity and cleverness can also
be dynamic contributive complexities, making up for
a deficiency of instruction; but these are probably
unquantifiable in many cases. Mindless agents,
such as the components of a cell, are theoretically far
easier to quantify in this regard.

Another type of contributive complexity is that of
the surrounding environment, to the extent it applies.
Truman notes that things like cell membranes can
add to the coded message itself during interpretation
(Truman 2012, under heading “Messages vs sensors
in CIS theory”). This is outside the scope of our
definition of information here, since our definition
applies only to the digital data (the coded messages,
in Truman’s model), not considering additional
contributions by the receiver during interpretation.
Thus, Truman’s definition of “information” is broader
than ours here. But for example, if the product
is coded to allow trial and error to adapt to its
environment, then certain parameters can fine-tune
themselves to the environment by its contribution.
For example, God created dogs with the genetic
ability to have hair of varying length through genetic
recombination. Coupled with natural selection (and

likely other mechanisms), this causes adjustments in
the hair length of a community of dogs to suit their
environment. In a cold region, dogs with longer hair
survive better, and eventually, the genetic variants
for shorter hair are filtered out of the gene pool. The
preference of which hair length should dominate was
not originally specified in the information, but it was
tuned through input by the environment. However,
this is trivial compared to the information needed for
hair in the first place, long or short, and compared
to the information allowing for genetic variety at all.

The level of functional complexity is almost
always superseded by the amount of instructional
information required to build it; which, in turn,
is almost always superseded by the amount of
intelligence required to generate the instructions.
For example, to describe a car engine is difficult; but
to understand all the instructions for assembling one
from scratch is far more difficult; and to write these
instructions in the first place is the most difficult
task of all. In general, like a waterfall, intelligence
cascades down into information, which cascades
down further into functional complexity. Thus, given
a pool of substantial functional complexity, it is most
reasonable to infer that it cascaded down from a
higher plane of information, which itself cascaded
down from a higher plane of intelligence.

This principle of inferring information from
functional complexity can be very helpful, for
example, when discussing the information in DNA.
One way to measure the information content in
DNA would be to look at the data itself; but we
can also infer DNA information by looking at the
resulting complexity of the functional product, less
any epigenetic or environmental contributions. This
remaining complexity, which is the vast majority,
implies at least this same amount of information
content in the DNA, and almost certainly immensely
more. For example, by studying a dragonfly, we notice
all the design details that must be in place for it to
function: the shape of the wings, the eyes, its sense
of balance, the tail, and a host of other variables.
If we can serialize these variables to their proper
tolerances and couch them in a well-formed language,
we can infer at least this amount of information in
the original instructions. One benefit of this metric is
that it need not be exhaustive. We can detect part of
the information content without needing to quantify
the entire amount.

As a simple example, perhaps you have been to a
fast-food restaurant where the lid did not quite fit onto
the fountain drink cup. Suppose that the rim is 10 cm
in diameter, and that the tolerance for the diameter
of the lid’s rim is 1 mm before the fit degrades. This
is a window of 2 mm (1 mm either way), or a 2% total
variation. Thus, the amount of distinction for this

301Significant Distinction

literal number is ~5.6 bits (−log2(0.02)). If we know
that the diameter of the lid was set via instructional
information, and not by trial-and-error or a self-
referencing specification (for example, by creating
the lid using the cup as a kind of mold), then we can
reasonably infer at least 5.6 bits of information to
specify the diameter of the lid. This is a conservative
measurement, since it takes only relative diameter
into account and not the absolute starting point (that
is, it is likely that more than six yes/no questions, or
bits, are required to get a diameter which is functional
for the cup). See Truman 2012 for more detailed
thought on such considerations. Further, we should
factor in many more parameters: the thickness of the
lid’s plastic, the material, the width of the cuts into
which to insert the straw, the specifications for the
bubbles on the top to punch in the type of drink, the
circularity, the creases to add strength, etc. And this
does not even consider the instructions surrounding
these raw parameters.

Comparisons with Other Metrics
In his book Signature in the Cell, Stephen Meyer

(2009, 362, 371) discusses many of these concepts. He
speaks of “functional significance in the pattern of
letters” and says, “If an improbable sequence produced
a functional outcome, then it was also specified in the
sense that Dembski’s method required.” This is the
basic idea of what we mean here by significance. In
his book In the Beginning Was Information, Werner
Gitt (2000, 55) says, “Shannon’s theory of information
is suitable for describing the statistical aspects of
information, e.g. those quantitative properties of
languages which depend on frequencies. Nothing can
be said about the meaningfulness or not of any given
sequence of symbols.” This also refers to the concept
of significance as defined here.

In a paper entitled “Information as Distinctions:
New Foundations for Information Theory,” David
Ellerman (2013, 3.6) explores a metric he says is dual
and convertible to and from Shannon information:
“By solving the dit-count and the bit-count for p0 and
equating, we can derive each measure in terms of the
other . . . Thus the two notions of entropy are simply
two different ways, using distinctions (dit-counts)
or binary partitions (bit-counts), to measure the
information in a probability distribution.” The sense
of “distinction” by Ellerman is not what is presented
here, although, as with Shannon information, it has
similarities.

Shannon information
Shannon information shares similarities with our

measurement of distinction, but it has key differences.
Here are a couple of examples. First, classic Shannon
information deals with probabilities regarding the

sender or source, whereas we are looking only at
the message on its own merits when it comes to
distinction (though to first identify significance, we
must use knowledge extrinsic to the data sequence
itself).

For example, in their paper “Shannon Information
and Kolmogorov Complexity,” Peter Grünwald and
Paul Vitányi (2010, 2) write that with Shannon
information, “it is only the characteristics of that
random source that determine the encoding, not the
characteristics of the objects that are its outcomes.”
They go on to quote Shannon, who explains that
semantics are excluded from consideration, and that
his system is designed before the specific message to
be sent is known (Shannon 1948).

Our measure of distinction is an intrinsic
measurement, whereas probability, properly
speaking as meant by Shannon, is extrinsic to the
specific data set. For instance, the text “zzzzzzz”
might have just as much Shannon information
as a random block of text, or even more, given the
rarity of the letter “z,” provided the random source’s
probability distribution does not typically result
in such orderly sequences. By contrast, significant
distinction does not take the source into account at
all, and thus measures no distinction, or no variety;
and if this completely repetitive string is taken alone,
it has no significant distinction.

A second example of a difference with Shannon
information is that we exclude conditional probability
for prefixes during that pattern’s first occurrence in
a message. This differentiates our measurement
here from others which use Shannon entropy in the
classical sense. For instance, Clément Pit-Claudel
outlines a Python script which calculates entropy
of a text using n-grams, but the author notes that
contamination can occur with longer values of n
because this calculation does not make a special case
for the first occurrence of a pattern. For instance,
Pit-Claudel (2013, under “Experimental results”)
writes, “In the graph presented above, it is therefore
likely that the estimates for n over 5 or 6 are already
plagued by a significant amount of sampling error;
indeed, for any given n there are in total 27n possible
n-grams consisting only of the 26 alphabetic letters
and a space, which exceeds the size of the corpus
used in this experiment as soon as n > 5.” (See
also, Cover and Thomas 2006, 168–169.) For our
purposes, the first occurrence cannot be considered a
redundancy, but only subsequent occurrences. Thus,
while our measure shares similarities with Shannon
information, there are key differences.

Kolmogorov complexity
Kolmogorov complexity is a measure of the

theoretically minimum underlying algorithmic

302 Peter Rankin

complexity of a data set. That is, it is a measure of
the shortest possible computer program which could
generate the data. Data sets which appear highly
complex can sometimes have very little Kolmogorov
complexity. As mentioned previously, an extremely
detailed image of the Mandelbrot can be generated by
a relatively short computer program, since the math
for generating these images is rather simple. Our
concept of distinction is different, however, because
it deals with simple repetition of data, and not with
algorithmic modulation.

Earlier, we considered why Kolmogorov
complexity does not measure what we desire here.
In summary, if the virtue of a data set is in its
modulated mathematical relationships, then it is
literal. In contrast, symbolic data stands for things
outside itself; and if such a mathematical relationship
did exist in the data, it would be incidental to our
purposes and could be ignored anyway. Further,
Kolmogorov complexity cannot be calculated in most
cases due to the halting problem, but an intuitive
metric of detected information must be accessible at
a basic level.

Coded information systems
Royal Truman’s Coded Information Systems (CIS)

theory measures the behavioral refinement of the
target system through use of some coded message
(Truman 2012, Figure 3). Truman’s metric is broader,
and more abstract, than significant distinction.

Because CIS quantitatively measures final
behavioral refinement, the metric will include
any contributions of preexisting resources (that is,
contributions of the target machinery implementing
the message). By contrast, significant distinction
excludes these preexisting resources, interested
in the measure of information content in the coded
message alone.

One interesting advantage of the CIS metric
is that it is likely to factor out redundancies in the
original coded message automatically. Because it
measures behavioral refinement, by the time the
coded message reaches this stage of effect, any
extraneous redundancies in the message are likely
to have been ignored (or combined) by the target
system during interpretation and thus filtered out of
the final metric. Significant distinction, on the other
hand, must use math to filter out redundancy.

Werner Gitt’s definition
Significant distinction shares many similarities

with Werner Gitt’s definition of information. His
definition consists of five “layers” (or levels) of
information. “Significance” corresponds rather well
to the last three layers (particularly to semantics
and apobetics, and to a lesser extent, to pragmatics).

However, with significant distinction, we do not
presuppose purpose or teleology but instead refer
neutrally to the “end” to which the data is working.
We can thus use significant distinction in a broader
argument to demonstrate intelligent intent as a
conclusion without having to assume it circularly
beforehand. “Distinction” corresponds to the first
two layers, and particularly to the first, statistics. It
corresponds only incidentally to the second, syntax,
because syntax forms the basis of the patterns or
repetitions within the text, and these patterns affect
its measure of distinction.

Specified complexity
A concept that appears quite similar at first glance

is specified complexity. For convenience, in this
section, SC will stand for specified complexity, and
SD will stand for significant distinction. These two
concepts are highly congruent in application; what
yields a high score in one will likely be high in the
other, and vice versa. However, they are essentially
distinct, and their purposes are different as well.
They are measuring completely different things.

First, SC relies on classic Shannon information as
part of its formula. William Dembski (2024, under
“Shannon and Kolmogorov Information,” paragraph
5) writes, “The complexity in specified complexity
is therefore Shannon information.” However, SD
uses a modified intrinsic metric which is distinct
from Shannon information. This makes SC more
source-focused, while SD is more data-focused. For
instance, William Dembski gives the example of ten
people in a room who all confirm that their birthdays
are January 1; in this case, the sequence has high
complexity in his sense (“complexity” in SC refers to
improbability; less probable events are considered
more complex). In our sense, however, ten identical
numbers (birthdays) would have no distinction, and
thus, no information content as we mean it, if taken
alone. SC is about the probability of the event being
produced under some hypothesis, whereas SD does
not consider this at all.

Second, with SC, the Kolmogorov complexity of
the description (specification) is inversely correlated
to (subtracted from) the specified complexity of the
message (Dembski 2024, under “Specified Complexity
as a Unified Information Measure,” paragraph 6
beginning “With Ewert’s lead”; Dembski and Ewert
2023, under 6.4 “Specification and Complexity”).
In other words, the simpler the specification for
the data, the lower the description’s Kolmogorov
complexity, and the higher the specified complexity.
That is, short descriptors are more “specific” (in this
sense) than long descriptors. By contrast, SD does
not use Kolmogorov complexity at all. (The halting
problem is not an issue with SC, because the relation

303Significant Distinction

is inverse, applied to the descriptor and not to the
data; that is, the halting problem could result in a
more conservative measurement of SC at times, but
never in a more liberal one.)

Third, SC can apply to data-bound data (i.e., when
the data’s value is in the patterns within the data
itself), whereas SD requires extra-data significance
to be considered information. A set of Fibonacci
numbers qualifies as SC by virtue of its intrinsic
data patterns, whereas it would not qualify as SD,
not having extrinsic significance by itself. The same
would go for 25 coin tosses of “heads” with a fair
coin; it is very interesting and improbable, but taken
alone, it contains no SD.

Fourth, SC focuses on descriptors of the products
for specificity, whereas SD focuses on the ends. These
are similar but not the same. For instance, in SD, the
end may be to “turn the driveshaft;” but in SC, the
descriptor may be “an internal combustion engine.”
The complexity of describing the product is not a
factor in SD specifically, whereas it can be a factor
in SC.

In short, SC is concerned with improbability and
simplicity of specification, whereas, strictly speaking,
SD is concerned with neither. (However, it is probable
that ends worth measuring in SD will be simple.) SD
is concerned only with quantifying information in a
particular sense which is often meant in everyday,
intuitive speech, but with this sense only, and
nothing more, taken alone. Though both concepts
are highly congruent in interesting ways, they are
fundamentally distinct measurements; and thus,
they are compatible and can be used together in the
same argument.

Conclusion
Significant distinction can be useful, including

in some young-earth Christian creation arguments.
First, it is a simple and objective measure which
aligns well with intuition. Multitools can be very
useful, but perhaps sometimes, a tool with a narrower
purpose can be more precise. Maybe by separating
out the concept of mere intuitive information from
other factors, it can then be combined with others
for greater force in certain settings. For example,
perhaps it can more easily quantify what it would
take to add new information to the human genome,
or which mutations are objectively removing
information; and thus, the argument of genetic
entropy can be strengthened even more, further
demonstrating deterioration and the necessity of
recent creation. It could also provide one additional
metric to support the claim that “information” as
meant by creationists is indeed an objective entity at
a basic level in many cases. Measuring the significant
distinction of portions of DNA would require the

expertise of geneticists to quantify portions which
are significant and interpreted sequentially. For
instance, the kinds of mutations which are beneficial
by virtue of breaking or deactivating functionality
reduce significant distinction objectively, and thus,
they could not be used as examples to explain
how evolution accounts for the rise of significant
distinction in the first place.

Second, the concept of significant distinction
aligns closely with the biblical ideas mentioned
by Paul. What Paul describes in 1 Corinthians 14
includes communication even by lifeless entities
like musical instruments, possibly making this
definition especially applicable to describing DNA,
which is transmitted and carried out by unconscious
chemical processes, yet while being true information,
nonetheless. In the Bible, God seems to have included
the basic keys for many amazing concepts; and this
may be one such case.

Third, it is probable that we can easily add concepts
to significant distinction to aid in an inference of
intelligence. For example, perhaps the simpler the
end, and the more complex the product, the stronger
the implication of intelligence. Flight is a very simple
end for a dragonfly (that is, this idea—of darting
freely through the air in any direction—is simple
enough to grasp as a concept); and yet the actual
mechanics involved to achieve this, or the product,
including its wing design, eyesight, body, tail, etc.,
are complex in the extreme. To imagine flight is
easy, but to effect it is arduous. This argument
would incorporate specified complexity, and it would
also parallel irreducible complexity, which is where
many parts work together such that if any did not do
their job, the entire machine would fail. The famous
example of irreducible complexity given by Michael
Behe is the simple mousetrap; to function properly,
it needs the platform, the hammer, the spring, the
catch, and the holding bar. If any one of these is
missing, the entire mousetrap’s function becomes
useless (Behe 2006, 42).

In conclusion, significant distinction may be a
biblical, intuitive, simple, incremental, and objective
measure of information content. Presuming that the
concept laid out here is accurately built upon the
biblical criteria discussed in 1 Corinthians 14, this
would be another example of the Bible’s supernatural
insight, not only in the subjects of history, science,
human relationships, and spiritual matters; but also,
in the topic of information theory, and written in the
first century.

References
Barrios, Julio Ernesto Rubio. 2015. “Information, Genetics

and Entropy.” Principia: An International Journal of
Epistemology 19, no. 1: 121–146.

304 Peter Rankin

Batten, Don. 2017. “Nylon-Degrading Bacteria: Update:
Nylonase does not Support Microbes-to-Mankind
Evolution.” May 19. https://creation.com/nylonase-update.

Behe, Michael J. 2006. Darwin’s Black Box: The Biochemical
Challenge to Evolution. New York, New York: Free Press.

Cover, Thomas M., and Joy A. Thomas. 2006. Elements of
Information Theory. 2nd ed. Hoboken, New Jersey: John
Wiley & Sons, Inc.

Cronin, Leroy, and Sara Imari Walker. 2016. “Beyond
Prebiotic Chemistry: What Dynamic Network Properties
Allow the Emergence of Life?” Science 352, no. 6290 (3
June): 1174–1175.

Dembski, Bill. 2025. “The Law of Conservation of Information:
Natural Processes Only Redistribute Existing Information.”
Bio-Complexity [under submission].

Dembski, Bill. 2024. “Specified Complexity Made Simple.” Bill
Dembski. February 26. https://billdembski.com/intelligent-
design/specified-complexity-made-simple/.

Dembski, Bill, and Winston Ewert. 2023. The Design Inference:
Eliminating Chance through Small Probabilities. 2nd ed.
Seattle, Washington: Discovery Institute Press.

Ellerman, David. 2013. “Information as Distinctions: New
Foundations for Information Theory.” University of
California/Riverside. January 23, 2013. https://ellerman.
org/wp-content/uploads/2013/01/InfoAsDits.pdf

Gitt, Werner W. 2000. In the Beginning Was Information: A
Scientist Explains the Incredible Design in Nature. Ulm,
Germany: Ebner.

Grünwald, Peter and Paul Vitányi. 2010. “Shannon
Information and Kolmogorov Complexity.” Centrum
Wiskunde and Informatica, July 22. https://homepages.cwi.
nl/~paulv/papers/info.pdf.

Meyer, Stephen C. 2009. Signature in the Cell: DNA and
the Evidence for Intelligent Design. New York, New York:
HarperCollins Publishers.

Pit-Claudel, Clément. 2013. “An Experimental Estimation of
the Entropy of English, in 50 Lines of Python Code.” Code
Crumbs. December 8. http://pit-claudel.fr/clement/blog/an-
experimental-estimation-of-the-entropy-of-english-in-50-
lines-of-python-code/.

Shannon, C. E. 1948. “The Mathematical Theory of
Communication.” Bell System Technical Journal 27 (July,
October): 379–423, 623–656.

Sharma, Abhishek, Dániel Czégel, Michael Lachmann,
Christopher P. Kempes, Sara I. Walker, and Leroy Cronin.
2023. “Assembly Theory Explains and Quantifies Selection
and Evolution.” Nature 622, no. 7982 (12 October): 321–328.

Truman, Royal. 2012. “Information Theory—Part 3:
Introduction to Coded Information Systems.” Journal of
Creation 26, no. 3 (December): 115–119.

305Significant Distinction

Appendix A. PHP computer program to calculate internal distinction of text.
1 <?php // Appendix A: A PHP program to measure internal distinction of text

2

3 // File name: distinction.php
4 // Sample usage:

5 //

6 // php distinction.php "IN THE BEGINNING WAS THE WORD ..."

7 // php distinction.php "../path/to/text/file.txt"

8

9 /**
10 * The statistics of a particular prefix text within a message

11 */

12 class PrefixStats
13 {

14 /**

15 * The total number of times this prefix occurs within the message, with at least

16 * one character following (i.e., cannot be on the very end to be a prefix)

17 */

18 public int $Occurrences;
19

20 /**

21 * The count of the next letters immediately following this prefix within
22 * this message; e.g., ["a" => 2, "e" => 12, ...], meaing that "a" follows

23 * this prefix twice in the message, "e" 12 times, etc.

24 */

25 public array $NextCharCounts = [];

26

27 /** The positions of the first occurrences of each "next char". The ordinal
28 * is measured at the start of the associated prefix occurrence. E.g.,

29 * ["a" => 1055, "e" => 145, ...], meaning that the first "a" following this

30 * prefix comes after the prefix beginning at position 1055, etc. Positions
31 * are 0-based (0 is the first position).

32 */

33 public array $NextCharFirstUses = [];

34
35 /**

36 * The position of the first occurrence of this prefix within the message.

37 * Positions are 0-based (0 is the first letter of the message).

38 */

39 public int $FirstUse;

40
41 /**

42 * Get the fraction of times the prefix is followed by the specified

43 * character. I.e., if 1 out of 4 prefix occurrences is followed by
44 * an "a", then this fraction would be 0.25.

45 */

46 public function getNextCharFraction(string $char): float {
47 $ncc = $this->NextCharCounts[$char] ?? 0;

48 return (float)$ncc / (float)$this->Occurrences;

49 }
50

51 /**

52 * When building these prefix stats, register the occurrence of a character
53 * that follows the prefix (keeping track of the totals and first occurrences)

306 Peter Rankin

54 *

55 * @param string $char The character following the prefix

56 * @param integer $prefixOrdinal The position of the prefix occurrence under

57 * consideration

58 */

59 public function registerNextChar(string $char, int $prefixOrdinal) {

60 $ncc = $this->NextCharCounts[$char] ?? 0;

61 if ($ncc == 0) {

62 $this->NextCharFirstUses[$char] = $prefixOrdinal;

63 }

64 $ncc += 1;

65 $this->NextCharCounts[$char] = $ncc;

66 }

67

68 /**

69 * Check whether this prefix contains any repetition (patterns after the prefix). If

70 * not, it is not applicable in our measurement.

71 */

72 public function containsRepetition(): bool {

73 foreach ($this->NextCharCounts as $char => $count) {

74 if ($count > 1) return true;

75 }

76 return false;

77 }

78 }

79

80 /** Measure the distinction of a string of text */

81 class Distinction

82 {

83 #region Private variables

84 /** The string being measured for distinction */

85 private string $s;

86

87 /** Cache the length of the string for speed */

88 private int $strlen;

89

90 /** An associative array of each character to its total count in the string;

91 * e.g., ['a' => 4, 'b' => 2, ...] */

92 private array $charCounts = [];

93

94 /** An associative array of character distribution fractions, or the fraction

95 * that each character takes of the entire message; e.g., ['a' => 0.03, ...] */

96 private array $charDistributions = [];

97 #endregion

98

99 #region Public variables

100 /** The calculation precision in digits (1k should be plenty for most situations) */

101 public int $CalcPrecision = 1000;

102

103 /** Very large unreduced prefix fractions take up a lot of calculation power per

104 * factorials; to help, the program can auto-reduce fractions to a given denominator

105 * for approximate measurements. About 400 should be plenty. */

106 public int $ApproximatePrefixFra ction = 400;

307Significant Distinction

107

108 /** Whether to write tracing output to the console */

109 public int $TraceLevel = 5;
110

111 /** Cap the cache entries at this position (to avoid too much memory usage) */

112 public int $CacheCap = 1000000;

113

114 /** The maximum prefix length that will be taken into consideration (performance) */

115 public int $MaxPrefixLength = 100;
116

117 /** Log text for each character, which may be printed to the output depending on

118 * settings. Also useful to allow printing of overview stats at the beginning. */
119 public array $CharLogs = [];

120

121 /** @param string $s The string to analyze for distinction */
122 public function construct(string $s) {
123 // Normalize string for regex purposes

124 $s = str_replace(["\n", "\r"], '`', $s);
125 $this->s = $s;

126 $this->strlen = strlen($this->s);

127
128 // Get the number of occurrences for each character

129 for ($i = 0; $i < $this->strlen; $i++) {
130 $char = $this->s[$i];

131 if (!isset($this->charCounts[$char])) {
132 $this->charCounts[$char] = 0;

133 }
134 $this->charCounts[$char] += 1;

135 }

136
137 // Calculate the character distribution fractions

138 foreach ($this->charCounts as $char => $count) {
139 $this->charDistributions[$char] = (float)$count / $this->strlen;
140 }
141 }

142

143 /**
144 * Get the distinction of the string per this measurement, in bits

145 *

146 * @return float The distinction, in bits, of the given string
147 */

148 public function getDistinction(): float {

149 $total = 0.0;
150

151 // Loop calculating and summing the distinction of each character in the message

152 for ($cursor = 0; $cursor < $this->strlen; $cursor++) {
153 $charLog = [];

154 if ($cursor % 1000 === 0) echo "."; // Display progress every 1k chars
155

156 $char = $this->s[$cursor]; // The character being analyzed

157 $a = $this->charDistributions[$char]; // The character's frequency fraction

158 $f = $a; // Which is also the initial expectation fraction
159

308 Peter Rankin

160 // Loop through any applicable prefixes, factoring in their "pulls" on the

161 // expectation fraction

162 for ($prefixLength = 1;
163 $prefixLength < $this->MaxPrefixLength;

164 $prefixLength++

165) {

166 // Make sure the prefix length is valid and applicable

167 $prefixPosition = $cursor - $prefixLength;

168 if ($cursor - $prefixLength < 0) break;
169 $prefix = substr($this->s, $prefixPosition, $prefixLength);
170 $ps = $this->getPrefixStats($prefix, $prefixLength);

171 $firstMatch = $ps->NextCharFirstUses[$char];
172 $target = $ps->getNextCharFraction($char);
173 $x = $ps->NextCharCounts[$char] - 1; // Number of _other_ matches

174 $y = $ps->Occurrences - 1 - $x; // Number of non-matches

175 $terminate = false;

176 if ($ps->containsRepetition() == false) {

177 $terminate = true; // No redundancy to measure
178 } else if ($firstMatch >= $prefixPosition) {

179 // If this is the first _match_, then we use the prefix fraction as

180 // the target only if it falls below the char distribution fraction
181 // (to account for the extra specificity needed in the rarity of this

182 // character); otherwise, this prefix is not applicable.

183 if ($target >= $f) {
184 $terminate = true;

185 }

186 }
187

188 // Run the calculation and adjust the expectation fraction

189 $certainty = $this->getCertainty($a, $x, $y);
190 if ($this->TraceLevel >= 7) {
191 $charLog[] = "\n "

192 . ($terminate ? '[terminate] ' : '')

193 . "[j=$prefixLength "
194 . ', x=' . $x

195 . ', y=' . $y

196 . ", t=" . number_format($target, 3)
197 . ', f[j-1]=' . number_format($f, 3)
198 . ', c=' . number_format($certainty, 3)
199 . ']';

200 }

201 if ($terminate) break;

202
203 $f = $this->pullNumber($f, $target, $certainty);
204 }

205
206 // Convert the expectation fraction into distinction bits

207 $d = -log($f, 2);
208 $total += $d;

209

210 // Log the results, if applicable

211 if ($this->TraceLevel >= 3) {
212 $charLog = array_merge([

309Significant Distinction

213 'd=' . number_format($d, 2)
214 . ' f=' . number_format($f, 3)

215 . ' pl=' . ($prefixLength - 1)
216], $charLog);

217 }

218 $this->CharLogs[] = $charLog;

219 }

220

221 echo "\n";
222 return $total;
223 }

224
225 /** Get the line-item detail logs to print */

226 public function getDetailLogs(): string {
227 $details = [];

228 for ($cursor = 0; $cursor < $this->strlen; $cursor++) {
229 $c = $this->s[$cursor];

230 $showCursor = $cursor + 1;
231 $detail = "[$showCursor] $c - " . implode(" ", $this->CharLogs[$cursor]);
232 $details[] = $detail;

233 }
234 return implode("\n", $details);
235 }

236

237 /** Associative array of cached [string Prefix => PrefixStats, ...] */

238 private array $prefixCache = [];

239 /**
240 * Get the stats for a given prefix

241 *

242 * @param string $prefix The prefix whose stats to get
243 * @param integer $prefixLength For performance, provide length of prefix
244 * @return PrefixStats The prefix stats
245 */

246 private function getPrefixStats(string $prefix, int $prefixLength): PrefixStats {
247 $ps = $this->prefixCache[$prefix] ?? null;

248 if (!$ps) {
249 // This prefix hasn't been cached yet, and so build it
250 $ps = new PrefixStats();
251

252 // Use lookaheads to include overlapping matches (more important in binary),

253 // and assure that at least one character follows in the message

254 $regex = '/(?=' . preg_quote($prefix, '/') . '.)/';

255 $numMatches = preg_match_all($regex, $this->s, $matches, PREG_OFFSET_CAPTURE);
256 if ($numMatches === false) throw new \Exception("Regex failed: " . $regex);
257 if ($numMatches === 0) throw new \Exception("No matches at all for prefix.");
258
259 $ps->FirstUse = $matches[0][0][1];

260 $ps->Occurrences = $numMatches;

261 foreach ($matches[0] as $match) {
262 $ordinal = $match[1];

263 $lastChar = $this->s[$ordinal + $prefixLength];

264 $ps->registerNextChar($lastChar, $ordinal);
265 }

310 Peter Rankin

266

267 $this->prefixCache[$prefix] = $ps;

268 }
269 return $ps;
270 }

271

272 /**

273 * Pull a number from one toward another linearly by a given fraction

274 *
275 * @param float $original The original number
276 * @param float $target The target number

277 * @param float $byFraction The fraction by which to pull
278 * @return float The number after being pulled toward the target
279 */

280 private function pullNumber(
281 float $original,
282 float $target,

283 float $byFraction
284): float {
285 return $original + (($target - $original) * $byFraction);

286 }
287

288 /** Cache the certainty calculations for combinations of (a, x, y) */

289 private array $certaintyCache = [];
290 /**

291 * Get the certainty fraction for a given combination of (a, x, y), per Equation 2.

292 *
293 * @param float $a The character distribution fraction within the message
294 * @param integer $x The number of other prefix matches with the cursor

295 * @param integer $y The number of prefix non-matches with the cursor
296 * @return float The corresponding certainty fraction
297 */

298 private function getCertainty(float $a, int $x, int $y): float {
299 // Serve the cached value if available
300 $cacheKey = number_format($a, 15) . ":" . $x . ":" . $y;
301 if (isset($this->certaintyCache[$cacheKey])) {
302 return $this->certaintyCache[$cacheKey];
303 }

304

305 // Large fractions can have excessive factorials; if configured, automatically

306 // reduce them to a reasonable denominator.

307 if ($x + $y > $this->ApproximatePrefixFraction) {

308 $total = $x + $y;
309 $div = (float)$total / $this->ApproximatePrefixFraction;
310 $x = floor($x / $div);
311 $y = floor($y / $div);
312 }

313

314 // Calculate the certainty fraction given the probability of a specific

315 // occurrence, taking into account permutations (see Equation 2).

316 $permutations = $this->getPermutations($x, $y);

317 $a = number_format($a, 20);
318 $probability = floatval(bcmul(

311Significant Distinction

319 bcmul(
320 bcpow($a, $x, $this->CalcPrecision),
321 bcpow(
322 bcsub(1.0, $a, $this->CalcPrecision), $y,
323 $this->CalcPrecision), $this->CalcPrecision),

324 $permutations, $this->CalcPrecision));

325 $certainty = 1.0 - floatval($probability);
326

327 $this->certaintyCache[$cacheKey] = $certainty;
328 return $certainty;
329 }

330
331 // Cache permutations for sets of (x, y), for faster processing speeds

332 private array $permutationsCache = [];
333 /**

334 * Get the permutations for given values of (x, y).

335 *

336 * @param integer $x The number of other prefixes which match with the cursor
337 * @param integer $y The number of other prefixes which do not match
338 * @return string The number of applicable permutations
339 */
340 private function getPermutations(int $x, int $y): string {
341 if (isset($this->permutationsCache[$x . ':' . $y]) == false) {
342 // We can simplify (x+y)!/(x!y!) somewhat by dividing out the

343 // greater number in the denominator from the numerator; to,

344 // product(y+1, ... y+x)/x!, or the opposite, if x is greater.

345 $g = max($x, $y);
346 $l = min($x, $y);
347 $num = 1;

348 $denominator = 1;
349 for ($i = $g + 1; $i <= ($g + $l); $i++) {
350 $num = bcmul($num, $i, $this->CalcPrecision);
351 }

352 for ($i = 1; $i <= $l; $i++) {
353 $denominator = bcmul($denominator, $i, $this->CalcPrecision);
354 }

355 $val = bcdiv($num, $denominator);
356 $this->permutationsCache[$x . ':' . $y] = $val;

357 }

358
359 return $this->permutationsCache[$x . ':' . $y];
360 }

361 }
362

363 // Command prompt interaction

364 if (!isset($ignoreCommandPrompt)) { // Allow calling this programmatically
365 $text = $argv[1] ?? '';

366 if (strlen($text) == 0) die("Must enter a string to analyze.\n");

367 if (strlen($text) < 2000 && str_ends_with(strtolower($text), ".txt")) {
368 if (!file_exists($text)) {
369 die('Could not find file: ' . $text . "\n");

370 } else {
371 $text = file_get_contents($text);

312 Peter Rankin

372 }

373 }

374 $dc = new Distinction($text);
375 $dc->MaxPrefixLength = 500;

376 $dc->TraceLevel = 10;

377 $distinction = $dc->getDistinction();
378

379 $summary = "Distinction detected: " . number_format($distinction, 10) . "\n";

380 $summary .= "Per character: "
381 . number_format($distinction / strlen($text), 10) . "\n";
382 $summary .= "Character count: " . strlen($text) . "\n";

383
384 $details = $dc->getDetailLogs();
385

386 echo $summary . "\n" . $details . "\n" . $summary;
387 }
388

313Significant Distinction

Appendix B.
Distinction calculation overview for text of John 1:1.

John 1:1 text:
IN THE BEGINNING WAS THE WORD, AND THE WORD WAS WITH GOD, AND THE WORD WAS GOD.

Breakdown of the distinction calculation for some of the cursor characters, for illustration:
•	 [1] “I”: No prefixes, and so the expectation fraction is simply the character distribution fraction (“a”). Since
this message contains 4 I’s, and there are 79 letters total, a=4/79. The negative log base 2 is ~4.3 bits of
distinction.
•	 [2] “N”: Out of 3/4 times “I” is used in this message, it also results in an “N”, as here; and so, for j=1 (prefix
length of 1), t=0.75 per our equation. Since this is the first occurrence of this pattern, we can take it into
account only if it is an outlier (greater distinction), and so we must terminate and ignore this pattern until the
next time it is used. This is because a pattern does not lose all distinction simply for being repeated; the first
occurrence must still be measured for distinction for accuracy.
•	 [3] “[SPACE]”: Here, a=16/79 (16 spaces out of a message of 79 letters). The prefix “N” (j=1) is used elsewhere
with a slight pattern (the letter “D” follows this prefix twice). Further, x=0 (no other prefix occurrences result in
a “T”), y=5 (5 other occurrences result in something else). Plugging these into our formulas, we get t=0.167 and
c=0.677; this is the first occurrence of the prefix, but it is somewhat of an outlier (t<f[j-1]), and so we count it,
and so f(1)=0.178. The next prefix length (j=2), prefix “IN”, has no redundancy (it results in something different
each time), and so we terminate, and d(i)=-log2(0.178) = 2.49.
•	 [4] “T”: 5/79, 3.98 bits. (We terminate at the first prefix because t>f(0).)
•	 [5] “H”: 5/79, 3.98 bits. (We terminate at the first prefix because t=1, and t>f(0).)
•	 [6] “E”: 5/79, 3.98 bits. (We terminate at the first prefix for the same reason; first pattern occurrences ought
not count, for accuracy.)
•	 [7] “[SPACE]”: 16/79, 2.3 bits. We terminate at the first pattern (j=1) for the same reason; E usually precedes
a space, meaning this is a pattern, but it is the first occurrence.
•	 [8] “B”: This contains a prefix (the space) which was used at least once before, but it resulted in a different
outcome (the letter “T”). However, in this case, t>f(0), and so we terminate and ignore this prefix. a=0.013
(1/79), and for j=1, x=0, y=15, t=0.063, which is greater than 0.013, and so we terminate, as this is the first (and
only) pattern match.
•	 (Skipping to position 72 for a good illustration of many applicable prefix lengths...)
•	 [72] “W” (of last word “WAS” in verse). There are 7 W’s, and so a=0.089 (7/79). The applicable prefixes extend
all the way back to 16 characters long (the text “D, AND THE WORD ” was used once prior in the message).
For most of these (lengths 3-16), the target is 1 (100% of the time, they resulted in a “W”); and the certainty
for these is about 0.9 (90%). This means that the expectation fraction will end up being almost exactly 1 by the
time we factor in prefix length 16, and so distinction will be essentially 0. We terminate at j=17 because it never
occurs elsewhere in the message (x=0, y=0), and thus no redundancy.

Complete Computer Output
For each letter, first the distinction is given in bits, followed by the expectation fraction (“f=”) and the

maximum applicable prefix length (“pl=”). If there are applicable prefixes, then beneath these, each one is
printed in brackets on its own output line. “pl=” stands for that particular prefix length; “c=” indicates the
certainty fraction; and “f=” indicates the expectation fraction before this prefix was considered.

Distinction detected: 151.3426959325
Per character: 1.9157303283
Character count: 79

[1] I - d=4.30 f=0.051 pl=0
[2] N - d=3.72 f=0.076 pl=0
 [terminate] [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984]
[3] - d=2.49 f=0.178 pl=1
 [j=1 , x=0, y=5, t=0.167, f[j-1]=0.203, c=0.677]
 [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.178, c=0.364]
[4] T - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947]
[5] H - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
[6] E - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999]

314 Peter Rankin

[7] - d=2.30 f=0.203 pl=0
 [terminate] [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973]
[8] B - d=6.30 f=0.013 pl=0
 [terminate] [j=1 , x=0, y=15, t=0.063, f[j-1]=0.013, c=0.174]
[9] E - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=0, y=0, t=1.000, f[j-1]=0.063, c=0.000]
[10] G - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=0, y=4, t=0.200, f[j-1]=0.051, c=0.188]
[11] I - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.051, c=0.144]
[12] N - d=0.44 f=0.739 pl=1
 [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984]
 [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=0.739, c=0.000]
[13] N - d=3.72 f=0.076 pl=0
 [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.076, c=0.326]
[14] I - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.051, c=0.229]
[15] N - d=0.44 f=0.739 pl=1
 [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984]
 [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=0.739, c=0.000]
[16] G - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.051, c=0.229]
[17] - d=2.30 f=0.203 pl=0
 [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.203, c=0.493]
[18] W - d=3.50 f=0.089 pl=0
 [terminate] [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
[19] A - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
[20] S - d=4.72 f=0.038 pl=0
 [terminate] [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
[21] - d=2.30 f=0.203 pl=0
 [terminate] [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959]
[22] T - d=2.06 f=0.240 pl=1
 [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947]
 [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.240, c=0.123]
[23] H - d=0.00 f=1.000 pl=2
 [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000]
 [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[24] E - d=0.00 f=1.000 pl=3
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999]
 [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000]
 [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[25] - d=0.00 f=1.000 pl=4
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992]
 [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [terminate] [j=5 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[26] W - d=1.19 f=0.437 pl=1
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [terminate] [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979]
[27] O - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
[28] R - d=4.72 f=0.038 pl=0
 [terminate] [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
[29] D - d=3.50 f=0.089 pl=0
 [terminate] [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992]
[30] , - d=5.30 f=0.025 pl=0
 [terminate] [j=1 , x=1, y=5, t=0.286, f[j-1]=0.025, c=0.866]
[31] - d=2.30 f=0.203 pl=0
 [terminate] [j=1 , x=1, y=0, t=1.000, f[j-1]=0.203, c=0.797]
[32] A - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=1, y=14, t=0.125, f[j-1]=0.063, c=0.620]
[33] N - d=3.72 f=0.076 pl=0
 [terminate] [j=1 , x=1, y=3, t=0.400, f[j-1]=0.076, c=0.760]
[34] D - d=3.50 f=0.089 pl=0
 [terminate] [j=1 , x=1, y=4, t=0.333, f[j-1]=0.089, c=0.694]
[35] - d=2.30 f=0.203 pl=0
 [terminate] [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916]

315Significant Distinction

[36] T - d=2.06 f=0.240 pl=1
 [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947]
 [terminate] [j=2 , x=1, y=2, t=0.500, f[j-1]=0.240, c=0.833]
[37] H - d=0.00 f=1.000 pl=2
 [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000]
 [terminate] [j=3 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[38] E - d=0.00 f=1.000 pl=3
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999]
 [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000]
 [terminate] [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[39] - d=0.00 f=1.000 pl=4
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992]
 [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [terminate] [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
[40] W - d=0.42 f=0.750 pl=5
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979]
 [j=3 , x=2, y=1, t=0.750, f[j-1]=0.743, c=0.979]
 [j=4 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979]
 [j=5 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979]
 [terminate] [j=6 , x=1, y=0, t=1.000, f[j-1]=0.750, c=0.911]
[41] O - d=0.00 f=1.000 pl=6
 [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
 [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.428, c=0.996]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=0.998, c=0.996]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996]
 [terminate] [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[42] R - d=0.00 f=1.000 pl=7
 [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [terminate] [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
[43] D - d=0.00 f=1.000 pl=8
 [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.993, c=0.992]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=8 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [terminate] [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
[44] - d=0.89 f=0.540 pl=1
 [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916]
 [terminate] [j=2 , x=1, y=1, t=0.667, f[j-1]=0.540, c=0.677]
[45] W - d=1.19 f=0.437 pl=1
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [terminate] [j=2 , x=1, y=2, t=0.500, f[j-1]=0.437, c=0.779]
[46] A - d=1.23 f=0.428 pl=2
 [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
 [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954]
 [terminate] [j=3 , x=1, y=0, t=1.000, f[j-1]=0.428, c=0.937]
[47] S - d=0.00 f=1.000 pl=3
 [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999]
 [terminate] [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
[48] - d=0.00 f=1.000 pl=4
 [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.967, c=0.959]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.959]

316 Peter Rankin

 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.959]
 [terminate] [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
[49] W - d=1.19 f=0.437 pl=1
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.437, c=0.169]
[50] I - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=0, y=6, t=0.143, f[j-1]=0.051, c=0.268]
[51] T - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.063, c=0.178]
[52] H - d=0.00 f=1.000 pl=1
 [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
 [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[53] - d=2.32 f=0.200 pl=2
 [j=1 , x=0, y=4, t=0.200, f[j-1]=0.203, c=0.596]
 [j=2 , x=0, y=4, t=0.200, f[j-1]=0.201, c=0.596]
 [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.200, c=0.000]
[54] G - d=4.30 f=0.051 pl=0
 [terminate] [j=1 , x=1, y=14, t=0.125, f[j-1]=0.051, c=0.633]
[55] O - d=3.98 f=0.063 pl=0
 [terminate] [j=1 , x=1, y=2, t=0.500, f[j-1]=0.063, c=0.833]
[56] D - d=3.50 f=0.089 pl=0
 [terminate] [j=1 , x=1, y=3, t=0.400, f[j-1]=0.089, c=0.732]
[57] , - d=1.99 f=0.251 pl=1
 [j=1 , x=1, y=5, t=0.286, f[j-1]=0.025, c=0.866]
 [terminate] [j=2 , x=0, y=1, t=0.500, f[j-1]=0.251, c=0.025]
[58] - d=0.05 f=0.967 pl=2
 [j=1 , x=1, y=0, t=1.000, f[j-1]=0.203, c=0.797]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.838, c=0.797]
 [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.967, c=0.000]
[59] A - d=0.01 f=0.996 pl=3
 [j=1 , x=1, y=14, t=0.125, f[j-1]=0.063, c=0.620]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.102, c=0.937]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.943, c=0.937]
 [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=0.996, c=0.000]
[60] N - d=0.00 f=1.000 pl=4
 [j=1 , x=1, y=3, t=0.400, f[j-1]=0.076, c=0.760]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.322, c=0.924]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.949, c=0.924]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.924]
 [terminate] [j=5 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[61] D - d=0.00 f=1.000 pl=5
 [j=1 , x=1, y=4, t=0.333, f[j-1]=0.089, c=0.694]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.259, c=0.911]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.934, c=0.911]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.994, c=0.911]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.911]
 [terminate] [j=6 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[62] - d=0.00 f=1.000 pl=6
 [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.540, c=0.797]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.907, c=0.797]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.981, c=0.797]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.797]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.797]
 [terminate] [j=7 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[63] T - d=0.00 f=1.000 pl=7
 [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947]
 [j=2 , x=1, y=2, t=0.500, f[j-1]=0.240, c=0.833]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.457, c=0.937]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.966, c=0.937]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.937]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [terminate] [j=8 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[64] H - d=0.00 f=1.000 pl=8
 [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]

317Significant Distinction

 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [terminate] [j=9 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[65] E - d=0.00 f=1.000 pl=9
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999]
 [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [terminate] [j=10 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[66] - d=0.00 f=1.000 pl=10
 [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973]
 [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992]
 [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992]
 [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [terminate] [j=11 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[67] W - d=0.00 f=1.000 pl=11
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979]
 [j=3 , x=2, y=1, t=0.750, f[j-1]=0.743, c=0.979]
 [j=4 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979]
 [j=5 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=0.750, c=0.911]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=0.978, c=0.911]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.911]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [terminate] [j=12 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[68] O - d=0.00 f=1.000 pl=12
 [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
 [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.428, c=0.996]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=0.998, c=0.996]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [terminate] [j=13 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[69] R - d=0.00 f=1.000 pl=13
 [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [terminate] [j=14 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[70] D - d=0.00 f=1.000 pl=14
 [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.993, c=0.992]

318 Peter Rankin

 [j=3 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=8 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [terminate] [j=15 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[71] - d=0.00 f=1.000 pl=15
 [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916]
 [j=2 , x=1, y=1, t=0.667, f[j-1]=0.540, c=0.677]
 [j=3 , x=1, y=1, t=0.667, f[j-1]=0.626, c=0.677]
 [j=4 , x=1, y=1, t=0.667, f[j-1]=0.653, c=0.677]
 [j=5 , x=1, y=1, t=0.667, f[j-1]=0.662, c=0.677]
 [j=6 , x=1, y=1, t=0.667, f[j-1]=0.665, c=0.677]
 [j=7 , x=1, y=1, t=0.667, f[j-1]=0.666, c=0.677]
 [j=8 , x=1, y=1, t=0.667, f[j-1]=0.667, c=0.677]
 [j=9 , x=1, y=1, t=0.667, f[j-1]=0.667, c=0.677]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=0.667, c=0.797]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=0.932, c=0.797]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=0.986, c=0.797]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=0.997, c=0.797]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.797]
 [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [terminate] [j=16 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[72] W - d=0.00 f=1.000 pl=16
 [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
 [j=2 , x=1, y=2, t=0.500, f[j-1]=0.437, c=0.779]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.486, c=0.911]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.954, c=0.911]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.911]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
 [terminate] [j=17 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[73] A - d=0.00 f=1.000 pl=17
 [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
 [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.428, c=0.937]
 [j=4 , x=1, y=0, t=1.000, f[j-1]=0.964, c=0.937]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.937]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
 [terminate] [j=18 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[74] S - d=0.00 f=1.000 pl=18
 [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999]

319Significant Distinction

 [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [j=18 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
 [terminate] [j=19 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[75] - d=0.00 f=1.000 pl=19
 [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959]
 [j=2 , x=2, y=0, t=1.000, f[j-1]=0.967, c=0.959]
 [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.959]
 [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.959]
 [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=18 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [j=19 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
 [terminate] [j=20 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[76] G - d=3.36 f=0.098 pl=1
 [j=1 , x=1, y=14, t=0.125, f[j-1]=0.051, c=0.633]
 [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.098, c=0.099]
[77] O - d=0.05 f=0.964 pl=2
 [j=1 , x=1, y=2, t=0.500, f[j-1]=0.063, c=0.833]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.427, c=0.937]
 [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.964, c=0.000]
[78] D - d=0.01 f=0.995 pl=3
 [j=1 , x=1, y=3, t=0.400, f[j-1]=0.089, c=0.732]
 [j=2 , x=1, y=0, t=1.000, f[j-1]=0.316, c=0.911]
 [j=3 , x=1, y=0, t=1.000, f[j-1]=0.939, c=0.911]
 [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=0.995, c=0.000]
[79] . - d=6.30 f=0.013 pl=0
 [terminate] [j=1 , x=0, y=6, t=0.143, f[j-1]=0.013, c=0.074]
Distinction detected: 151.3426959325
Per character: 1.9157303283
Character count: 79

320 Peter Rankin

Content Format Length Distinction Average per Character

John 3 English 4,045 7,325.6 1.81

Binary (from English ASCII) 32,360 8,035.2 0.25

English (CAPS) 4,053 7,028.1 1.73

Greek 6,682 6,645.4 0.99

Latin (CAPS) 3,394 6,082.3 1.79

Genesis 1 English 4,117 4,914.9 1.19

Genesis 5 English 2,759 2,949.9 1.07

Colossians English 11,017 20,366.8 1.85

Binary (from English ASCII) 88,136 21,299.3 0.24

Gospel of John English 98,288 122,281.3 1.24

DNA Yeast gene 5,026 8,079.4 1.61

Random Data Binary 200 160.2 0.80

500 411.0 0.82

50,000 41,645.7 0.83

Hexadecimal 500 1,824.9 3.65

5,000 17,994.5 3.60

50,000 178,554.1 3.57

Appendix C.
Sample Distinction Measurements for Selected Texts.

Bible passages were exported from the open-source computer program Xiphos, available from Crosswire
at: https://xiphos.org/ . Translations used were: English, King James Version (KJV); Greek, Elzevir Textus
Receptus (1624); Latin, Vulgate. For the first two entries regarding John 3, the English export was altered to
be paragraph-format with no verse numbers, with a matching binary-formatted text file of chars “0” and “1”
based on ASCII values for the corresponding text file. For all other Bible exports, a standard Xiphos export
was used with minimal metadata output, and the translation information metadata message removed from
the beginning of the text. Random data was taken either from freely available random data sources online
or generated using PHP’s built-in cryptographically secure random_int function. The yeast gene measured
was taken from a sample GenBank database entry available from the United States National Center for
Biotechnology Information (available on the website for the National Institute of Health, NIH): 2025, https://
www.ncbi.nlm.nih.gov/genbank/samplerecord/ . Note that we only measure distinction here as an exercise; we
do not seek to establish the significance of the entire dataset, which would require analysis by someone with
the appropriate knowledge of genetics.

321Significant Distinction

Appendix D.
Comparative Results of Selected Metrics of
Information.

Here, we will compare the information measure of
the following messages:

1.	The letter “z” repeated 100 times
2.	A random sequence of 100 letters and numbers
3.	The first 1,000 members of the Fibonacci

sequence
4.	Text of John chapter 3
5.	Phone call with a request
We will compare these messages using four

metrics: significant distinction, Shannon information,
Kolmogorov complexity, and specified complexity.
These four are well suited for quantitative
comparison. We will not here consider Coded
Information Systems (CIS) because it is a broader
measure, extending beyond the coded message itself
to include information added by the mechanisms of
the receiver, etc. We will also not consider Werner
Gitt’s definition in this appendix because it is multi-
faceted (with five “levels” of information) and not
suited for this type of comparison (for example, see
Gitt 2000, 124, under question “Q4: Please give a
brief definition of information”).

The Letter ‘z’ repeated 100 times.
Summary of measurements:

1.	Significant distinction: 0 bits (N/A, no
significance, no distinction)

2.	Shannon information: 1,040 bits
3.	Kolmogorov complexity: <= 248 bits (PHP)
4.	Specified complexity: >= 960 bits

Significant distinction
Because this message has no meaning outside

itself, it contains no significance. Further, because all
the letters are the same, it contains no distinction. It
thus contains no information under this metric.

Shannon information
The frequency of the letter “z” (uppercase or

lowercase) in English is about 0.074%, or about 1
in 1,350 letters. This is 10.4 bits per occurrence if
assuming constant probability distribution for each
character. Multiplied by 100, this yields 1,040 bits of
Shannon information. (For simplicity, we will not use
n-grams for this calculation.)

Kolmogorov complexity
We can output 100 zs in sequence through the

following PHP computer program:
<?php echo str_repeat(‘z’,100);

This program is 31 characters long, or 248 bits if
using PHP.

Specified complexity
If assuming the probabilities given by the Shannon

calculation above (as 1,040 bits), we then subtract the
bits necessary to specify the sequence. We could write
the English text, “z repeated 100 times.” If using 20
bits per word (which is like how Dembski calculates
specified complexity in some examples), we end up
with roughly 80 bits to specify this sequence. We
subtract this and get a lower bound of 960 bits.

Random Sequence of 100 Characters
Let this be a random sequence of 100 characters

with equal probabilities for all English letters
(uppercase or lowercase) and numbers.
Summary of measurements:
1.	Significant distinction: 0 bits (N/A, no significance)
2.	Shannon information: 595 bits (letter frequencies)
3.	Kolmogorov complexity: <= 912 bits (PHP)
4.	Specified complexity: 0 bits

Significant distinction
Unless we can detect significance in a data set, we

cannot measure it for significant distinction. Random
text is therefore outside the scope of significant
distinction unless some sort of significance can be
defined (that is, a randomly generated encryption
key, for example).

Shannon information
If assuming a source known to choose randomly

between uppercase and lowercase letters and
numbers, then the bits of each character will be
about 5.95 (26 uppercase, 26 lowercase, and 10
numbers = 62 characters; -log2(1/62) = ~5.95). Thus,
the Shannon information of 100 such characters is
595 bits.

Kolmogorov complexity
Since this data is random, the shortest PHP

program capable of outputting the sequence will
likely be:

<?php echo “[TEXT]”;
This is 14 characters besides the text itself to be

outputted; meaning it is 114 bytes long, or 912 bits.

Specified complexity
Because the text is random, it has no specificity (in

the sense meant by specified complexity). Thus, there
is no specified complexity, since the bits required
to describe the sequence will match or exceed the
improbability of the sequence itself.

First 1,000 Members of the Fibonacci Sequence
Summary of measurements:

•	 Significant distinction: 0 bits (N/A, no significance,
literal and not symbolic data)

322 Peter Rankin

•	 Shannon information: 525,000 bits (equal
probabilities for 0-9 and SPACE)

•	 Kolmogorov complexity: <= 592 bits (PHP)
•	 Specified complexity: >= 525,283 bits

Significant distinction
The Fibonacci sequence, taken alone, is not

significant of anything outside itself. (See the section
in the paper on literal vs. symbolic data.) Thus, it is
outside the realm of significant distinction.

Shannon information
For simplicity, we will assume an even chance for

each of the 10 numeric digits (0-9) and the space,
making the probability of each character 1/11, or
about 3.46 bits. The first 1,000 Fibonacci numbers
consist of 151,864 digits total (including spaces
separating each number), or 525,363 bits. (By the end
of the sequence, numbers are over 300 digits long!)

Kolmogorov complexity
We can write this with a relatively short PHP

computer program:
<?php $a=0;$b=1;for($i=0;$i<1000;$i++){echo $b.”
“;$a=$b;$b=bcadd($b,$a);}

This is a total of 74 bytes, or 592 bits.

Specified complexity
We could specify the sequence as: “first thousand

Fibonacci numbers”; or, using the estimate of 20
bits per word, a specification of 80 bits. Thus, the
specified complexity is the Shannon information
minus the specification bits, or 525,363–80 = 525,283
bits (assuming even probability distribution for each
digit).

Text of John Chapter 3
Summary of measurements:

•	 Significant distinction: 7,325.6 bits
•	 Shannon information: 8,560.9 (using sin-

gle-word frequency)
•	 Kolmogorov complexity: <= 17,784 bits (PHP,

gzuncompress/base64_decode)
•	 Specified complexity: 8,500.9

Significant distinction
As Christians, we accept the significance of

the entire Bible on faith; and we also experience
the significance of much of it through personal
experience. Thus, we take the entire text of John
chapter 3 as significant. All that remains is to
calculate its distinction. Running the text of John
chapter 3 through the computer program, we get a
measurement of 7325.6 bits.

Shannon information
Shannon information is based on the probabilities

of the source, or sender; and thus, there are different
ways of calculating it. Using a simple word-frequency
method from a freely available database online, the
“probability” of each word in isolation was taken, the
bits calculated from that, and the results summed.
N-grams of varying lengths could be used instead
and would reduce the bits measured, provided
a calculator was programmed. For this paper, it
was programmed to use simple word frequency for
simplicity, yielding 8560.9 bits.

Kolmogorov complexity
To calculate this, run the text of John 3 through

PHP’s “gzcompress” method, and the output of
that through “base64_encode.” Next, create a PHP
program which simply reverses the procedure:
<?php echo gzuncompress(base64_
decode(‘. . .’));
A smaller file size could probably be achieved by

using raw binary instead of base64-encoded text. As
it is, this yields an upper bound of 17784 bits.

Specified complexity
Presuming that the specification of “John

chapter 3” is sufficient, using the conservative 20
bits per specification word, this leaves us with 60
bits of specification subtracted from the Shannon
information of the text for 8500.9 bits.

Phone Call
(Neighbor) Hi, I am out of town and need to ask you
to do me a favor for my dog. Hold on, someone is at
the door. Who is it? It’s the pizza delivery man, hold
on a second. Great, thanks, yes, these pizzas look
correct. Here’s a tip. You’re welcome! Okay, let me
set these pizzas down on the table. Okay, I’m back.
Could you feed my dog for me tonight? The food is
in the garage in the large plastic bucket. Thanks!
Summary of measurements:

•	 Significant distinction: 648 bits
•	 Shannon information: 919 bits (single-word

frequencies)
•	 Kolmogorov complexity: <= 3,256 bits (PHP)
•	 Specified complexity: >= 669 bits

Significant distinction
Identifying the end of this phone call as helping

the neighbor’s dog, we can eliminate the entire part
of the conversation regarding the pizza:

(Neighbor) Hi, I am out of town and need to ask you
to do me a favor for my dog. Hold on, someone is at
the door. Who is it? It’s the pizza delivery man, hold
on a second. Great, thanks, yes, these pizzas look
correct. Here’s a tip. You’re welcome! Okay, let me

323Significant Distinction

set these pizzas down on the table. Okay, I’m back.
Could you feed my dog for me tonight? The food is
in the garage in the large plastic bucket with the
lid. Thanks!
This leaves us with the text:
(Neighbor) Hi, I am out of town and need to ask
you to do me a favor for my dog. Could you feed my
dog for me tonight? The food is in the garage in the
large plastic bucket with the lid. Thanks!
Running this through our PHP program to perform

our calculation, we get a distinction of 648 bits. For
a detailed example of performing this calculation
by hand using another text, please see Appendix B.
Here, we will demonstrate the distinction calculation
for a few example letters. To start with, we will
analyze the second and final occurrence of the word
“dog” (positions 100-102):
•	 “d”: There are 9 d’s in a message with a total

length of 194; making the expectation of “d”
9/194 = 0.046 expectation fraction with no prefix.
The 1-letter prefix is [SPACE]; in two other cases,
[SPACE] is followed by “d”, and in the other 39
cases, it is followed by something else (x = 2, y = 39).
Thus the 1-character prefix expectation t = 0.071.
Using our iterative equation, this adjusts our
expectation fraction to 0.064. For a prefix length of
2, or “y[SPACE]”, both times this prefix occurs, it
results in the same letter, “d”; thus, x = 1, y = 0, t = 1,
c = 0.954; increasing the expectation fraction to
0.957, per our equation. By the time the maximum
applicable prefix length is reached (length 4, since
“[SPACE]my[SPACE]” occurs elsewhere), the
expectation fraction has reached 1.00, resulting
in virtually no distinction for the letter “d” in this
instance.

•	 “o”: The same applies to this letter, except that the
maximum prefix length reaches 5. The only other
time “[SPACE]my[SPACE]d” occurs (earlier),
it also results in an “o”, thus having virtually no
distinction.

•	 “g”: Same (virtually no distinction), except the
maximum applicable prefix length is 6.

•	 . . .
•	 [Position 183, “l” for “lid”] “l”: There are 4 ls

(lowercase L) out of 194 total characters; making
the no-prefix expectation 4/194 = 0.021. With prefix

length 1, the [SPACE] is followed once elsewhere
by the same letter “l”, and 40 other times by a
different letter; thus x = 1, y = 40, t = 0.048, c = 0.633.
With a prefix length of 2, x = 1, y = 6, t = 0.250, and
c = 0.873, since the two-letter prefix (“e[SPACE]”)
occurs 7 other times, once matching the cursor, 6
times not matching. We continue with this until
we reach the maximum applicable prefix length
of 5, where x = 1, y = 1, t = 0.667, c = 0.960. The six-
letter prefix occurs nowhere else in the message,
and thus we terminate the iterative function, with
the expectation fraction ending at 0.666, and a
distinction of 0.59 bits.
When we add together all the bits for each

character, we measure 648 bits of distinction total.

Shannon information
If using the single word probabilities, and taking

the entire message (since with Shannon information,
we do not discriminate based on significance), we
calculate 919 bits. Another method would be to
calculate the probabilities of each letter based on
letter frequency, which would result in a higher
measurement; or we could use n-grams, which would
likely result in a lower measurement. For simplicity,
we use the single-word probability calculation based
on open data available online.

Kolmogorov complexity
Using the same method as the previous example

(using base64_encode and gzcompress), the program
is 407 bytes, or 3,256 bits.

Specified complexity
Presuming that a suitable specification can be

found in 10 words, with 20 bits per word as a safe
estimate, this would subtract 200 bits, leaving
at least 719 bits. Assuming 2^50 other possible
messages matching a suitable specification, we are
left with 669 as a conservative lower bound. However,
this is based on guesswork and depends on the
chance hypothesis chosen (e.g., word probabilities,
character probabilities, n-grams, or some other
chance hypothesis). Yet this rough estimate should
be suitable for conceptual comparison.

324

	Content:
	Format:
	Length:
	Distinction:
	Average per Character:
	English:
	John 3Row1:
	John 3Row2:
	English CAPS:
	John 3Row3:
	Greek:
	John 3Row4:
	Latin CAPS:
	Genesis 1:
	English_2:
	Genesis 5:
	English_3:
	English_4:
	ColossiansRow1:
	English_5:
	DNA:
	Yeast gene:
	Random DataRow1:
	BinaryRow1:
	Random DataRow2:
	BinaryRow2:
	Random DataRow3:
	Random DataRow4:
	HexadecimalRow1:
	Random DataRow5:
	HexadecimalRow2:

