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Abstract
How can we objectively distinguish between the prose of a monkey’s banging on a keyboard versus 

the poetry of Longfellow? Does a 30-minute 100-megabyte video of kittens playing with a ball of yarn 
truly contain a thousand times more information than the plain text of a highly intelligent book that takes 
up less than 0.1% of the same disk space on a computer? Or is there a metric which can more accurately 
compare the two? How should we measure for repetition and redundancy within a message? This 
article explores the concept of “significant distinction” as an objective measure of information which 
aligns closely with our intuition. Significance refers to the data’s representation of something outside 
itself, such as a set of instructions for building a piece of functional equipment. Distinction refers to the 
degree to which the data is not internally redundant. The conjunction of the two attributes is the metric 
called significant distinction, or its information content under the definition here, when applied to data. 
Using the same principle, a reasonable method for inferring information from the functional complexity 
of the end product is given. It is then compared against other concepts, such as Shannon information, 
Kolmogorov complexity, specified complexity, and coded information systems theory. Possible 
applications are considered, including arguing for a young and specially created human genome.
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Introduction
In the first century, Paul the apostle discussed 

the meaningful communication of information 
in 1 Corinthians 14. He stressed two critical 
attributes: distinction, or clear differences within the 
communication of a message (for example, verse 7, 
“except they give a distinction in the sounds”); and 
significance, or the symbolic nature of a message (for 
example, verse 10, “There are, it may be, so many 
kinds of voices in the world, and none of them is 
without signification”). The conjunction of these two 
attributes, when fleshed out more fully, provides a 
new metric for measuring the information content of 
a message. In many cases, this metric can be quite 
objective, especially when the end (or purpose) of the 
data is objective.

One common criticism from evolutionists is 
that creationists do not have a clear and objective 
definition of what we mean by “information.” The 
purpose here is to explore significant distinction as 
another objective measurement of information which 
quantifies our meaning in a specific sense, a sense 
which is common and intuitive. Other metrics within 
information theory do exist. Here is a summary of 
some popular ones:
• Shannon information measures the level of

“randomness” (or entropy) in a data source. It
was created to find ways of communicating the
same data with less transmission by picking up on
patterns in the sender. For example, in English,
the letter “e” appears most frequently, and so it
should not require as much space in data to send
as a less common letter. Combinations like “th”

and “sh” are also very common, thus having lower 
Shannon information.

• Kolmogorov complexity, or algorithmic
complexity, is a theoretical measure of the
shortest computer program capable of generating
the data in question. This means that some data
sets seemingly very complex, such as images of
fractals, contain remarkably little Kolmogorov
complexity.

• Specified complexity has been described by
William Dembski as the difference between
the Shannon information of the data and the
Kolmogorov complexity of its description (Dembski 
2024, under “Specified Complexity as a Unified
Information Measure,” paragraph 6, beginning
with “With Ewert’s lead”). “Specificity” means the
simplicity in describing the data, and “complexity”
basically means improbability, or Shannon
information. For example, a highly improbable set
of DNA instructions which produces something
with a very simple description, like “flagellar
motor,” would have high specified complexity per
Dembski’s metric.

• Werner Gitt’s definition consists of five “layers” 
of information: statistics (for example, number
of letters, their frequencies, etc.), syntax (for
example, how letters are allowed to be joined
together), semantics (the meanings represented
by the symbols in the text), pragmatics (how the
message is to be carried out practically), and
apobetics (purpose, meaning, teleology). (Gitt
2000, 50–82, chapter 4, “The Five Levels of the
Information Concept”).
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•	 Coded Information Systems (CIS) treats the 
coded message as part of a broader system. The 
metric is concerned with how much the system’s 
behavior is refined to attain a goal as the result 
of the coded message and its interpretation. 
Not only the coded message, but also the design 
details of the system itself, can contribute to the 
measurement of information under this metric.
The new metric proposed here borrows from 

existing discussions and metrics. For example, 
creationists have long discussed the idea of “meaning” 
in data, which is essentially our term “significance.” 
Creationists have also stressed that there is a 
difference between the highly ordered yet simple 
patterns which sometimes form spontaneously 
in nature (such as patterns in mineral crystals or 
snowflakes) and the complex information found 
in DNA; this consideration is similar to our term 
“distinction.”

If we abstract the concepts of “significance” and 
“distinction,” we can apply the underlying principles 
not only to data, but to physical systems themselves; 
we will call this “functional complexity.” Functional 
complexity is the sum of all the details of a physical 
system which contribute to the carrying out of its 
function, such as, for example, all the intricate 
physical components of a car engine which aid in its 
ability to turn the driveshaft. It is the analog, in the 
physical realm, of significant distinction in the realm 
of data.

This discussion has three parts. First, we will define 
and illustrate the concept of significant distinction. 
Second, we will discuss how to infer the existence 
of significant distinction in a set of instructions (the  
coded message) by analyzing the functional  
complexity of the resulting physical system. For 
example, we can infer that there exists much 
information (significant distinction) in a dragonfly’s 
DNA by analyzing the functional complexity of the 
resulting insect. Third, we will compare this metric 
of significant distinction with several popular 
metrics, both in information theory and in creationist 
discussions more broadly. The goal is to provide an 
objective metric for the intuitive sense of the term 
“information” which can then be incorporated into 
broader arguments, including, for example, the 
evidence that DNA has a Creator, the objectivity of 
the decay of genetic content in this fallen world, and 
by extension, the evidence of its recent creation.

Defining Significant Distinction
The definition of this proposed metric is as follows:
Information content can be measured as distinct 
data significant to some end.
This definition hinges on two key concepts: 

(1) significance and (2) distinction. The former 

is a philosophical concept requiring abstract 
conceptual terminology and discussion, the latter 
is mathematical. The former can be detected only 
through mental activity, the latter through statistical 
computation. The former requires an identified end 
outside of the message, while the latter analyzes only 
the message itself. Both steps are needed for this 
metric, the philosophical and the mathematical.

For example, suppose that you have a furniture 
assembly booklet. Reading it, you recognize its end 
(that is, “purpose,” broadly speaking), which is to 
direct the building of a desk for writing. How would 
you measure its significant distinction toward that 
end? First, you would mark all the text in the booklet 
which aids in building the writing desk in some way. 
For example, you can exclude the legal disclaimers, 
other things like the table of contents, etc.; because 
although they may be significant in other ways, they 
do not help you build the desk (the end product). 
This is how you would measure raw significant data. 
Next, you would account for repetition or redundancy 
in the remaining data to determine the amount of 
uniqueness, or distinction. The result is the amount 
of information you have detected under this metric; 
that is, the amount of significant and distinct data.
Consider the following illustrations:
•	 Insignificant indistinction: 

“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA”
(This text carries no meaning and thus lacks 
significance; and since all the letters are the same, 
there is no distinction or variety.)

•	 Significant indistinction (relative): 
(Sports fan) “Go Tigers! Go Tigers! Go Tigers! . . .”
(These cheers are significant relative to the fans 
and to the team; yet it is mostly repetitive, and so 
it has little distinction.)

•	 Insignificant distinction: 
“cSxeWuYDbX xXP LfibUzvOR; bCmSGFpG 
wyMQQklqRT, ROGNuD, . . .”
(This text was generated randomly and has no 
significance or meaning; however, it contains 
almost no pattern, and thus it has extremely high 
distinction.)

•	 Significant distinction: 
“I shot an arrow into the air, It fell to earth, I 
knew not where . . .”
(This text has meaning in English and is significant; 
it also is non-repetitive, except for repetitions of 
syntax, and thus it has a high level of distinction.)

Basic definitions
Before defining significance and distinction more 

precisely, we should define a few preliminary terms. 
First, by “detail” is meant any physical property of 
a system. Details about a desk include its weight, 
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width, length, height, materials, color, the types 
of joints between the pieces, and so on. Details can 
be very broad, such as the size of the desk relative 
to the room; or very narrow, such as the position 
of individual fibers of wood in a panel, or even the 
position of each molecule in the desk.

By “data,” we mean sequential digital data; that is, 
a sequential series of definite integers or symbols. On 
a computer, everything is numeric at its foundation 
and is ultimately a series of simple bits (0 and 1). If 
you type a sentence on the computer, each letter is 
stored as a number in an 8-bit “byte” (or multiple 
bytes) which correlate to that letter. We can do 
something similar for any language with a definite 
alphabet, because we can map each symbol to its own 
integer. For instance, we could decide to map A = 1, 
B = 2, etc.

By “serialization,” we mean the process of 
converting physical details into data. For example, 
when you measure a desk and write down its 
specifications, you are serializing the physical details 
of the desk into written data. (More broadly, this 
is called “quantification;” but our purpose is more 
precise, since we desire a serial string of numbers, 
as we will see.) Detail refers to the raw physical 
properties, such as the literal length of a desk, while 
data refers to the representation of this length as a 
sequence of integers or letters.

Distinguishing detail from data is important for 
a few reasons. First, raw details (or properties) can 
be represented as symbols in a variety of ways. You 
could describe the length of a desk as “4 ft 1 in” or 
“49 in,” and both would mean the same thing. We 
could use English or metric measurements (inches vs. 
centimeters) or use Spanish or Japanese. Computers 
have different ways of storing numbers with decimal 
places. Precisely the same detail could be represented 
in many different ways in data. Second, data can 
represent detail in a kind of terse “shorthand” if the 
receiver knows what the terms mean. Third, data 
can meaningfully symbolize non-physical concepts, 
including emotion and spiritual matters. Thus, 
distinguishing between data and detail is important 
for our purposes.

Additionally, we should distinguish between the 
data and the communication channel. English text 
can be communicated via an e-mail on a computer, 
on a letter written in cursive with a fountain pen, or 
over a radio broadcast, for example. In each case, the 
same digital English data is being communicated, 
only over different channels.

By the term “end,” we mean that toward which 
something is working. (Since the section on 
“significance” is conceptual or philosophical, we 
use these words in a conceptual sense, consistent 
with standard dictionary definitions, and not in a 

technical engineering sense.) “End” is like the term 
“purpose,” except that it does not necessarily imply 
intelligent intent, which allows us to use our metric 
in an argument demonstrating intelligent intent 
without having to circularly assume it beforehand. 
One of the ends of the DNA of a dragonfly is to give 
its wings the ability to propel it through the air, as 
an example. The “product” is built to achieve the end 
(such as the wings, nerves, etc.). For instance, if you 
look at the blueprints of a car engine, the “end” is to 
turn a driveshaft, while the “product” is the engine 
itself. In this case, the end is very simple (rotation of 
a shaft), while the product is highly complex (all the 
varied components of the engine to accomplish this 
end).

Significance
Next, we come to defining the two core concepts, 

significance and distinction. The first, significance, is 
the philosophical and conceptual side of the metric, 
and it requires mental activity. Significance cannot 
be measured using computation and statistical 
features of the data alone. To infer significance, first, 
we must identify an appropriate “end” for the data. 
For instance, studying the blueprints of a car engine, 
with sufficient knowledge, we can recognize that 
its end is to turn a driveshaft. Once we identify the 
end, we can mark all data which contributes in some 
way toward that end, or all the data which helps in 
turning the driveshaft. For our purpose, we do not 
care about the “degree” of significance; we simply 
place all significant data into a set.

Notice that before we can apply our metric at all, 
we must recognize an appropriate end of the data 
upfront. Measuring information (specifically, the 
“significance” portion) in our intuitive sense here 
can never be done by looking at the data in complete 
isolation. Paul stresses this point (1 Corinthians 
14:11): “Therefore if I know not the meaning of the 
voice, I shall be unto him that speaketh a barbarian, 
and he that speaketh shall be a barbarian unto me.” In 
“Information, Genetics and Entropy,” Barrios (2015) 
stresses the need of the observer to understand the 
code to infer semantic value, or meaning, indicating 
that semantic value cannot be inferred from a data 
set in complete isolation, which agrees with Paul’s 
point. Further, the objectivity of our measure is 
therefore limited by the objectivity of the identified 
end; in cases like beauty and art, it is likely that 
these are presently far too subjective for our metric. 
Other times, we may not adequately recognize the 
significance of the data (Daniel 12:4; 1 Peter 1:11).

However, although our goal here is not to argue 
the philosophy of value or ultimate meaning as 
such, we should note that functional ends are quite 
clear and uncontroversial. Microbiology has made 
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it clear that DNA is significant to the survival of 
an organism. Survival and reproduction are very 
simple and objective ends that even evolutionists 
will acknowledge as having value in their theory; 
and thus, so are all subordinate ends, such as the 
organism’s ability to see, hear, move, and digest. As a 
result, all DNA which contributes toward these ends 
is significant in that respect, and we can apply our 
metric.

Further, we need not circularly assume intelligent 
intent to have a valid “end” of the data (we use the 
words “goal” or “purpose” as synonyms only in the 
loose sense of these terms). As Dembski (2025, under 
“5 A Note About Targets” [in submission]) notes in 
his paper “The Law of Conservation of Information: 
Natural Processes Only Redistribute Existing 
Information,” a “target” (essentially the same basic 
concept as the term “end” used here) does not require 
the assumption of purpose; targets can be natural 
or neutral, such as with functionality; and Dembski 
notes that even prominent evolutionists refer to 
the same concept from a naturalistic standpoint. 
Function is a particularly good candidate as an end 
(or target) against which we can objectively measure 
significant distinction for our purposes here as well.

As a practical example, consider a chapter in a 
construction book about concrete foundation footers, 
written in English. You know the language, and you 
also know something of construction; and so with 
relative ease, you identify the end of this data, which 
is to create a strong platform to support a structure. 
Thus, all data in this chapter which contributes to 
the strength of the foundation is significant to that 
end. If the foundation will be weaker without rebar, 
then the data concerning rebar is significant; and 
if the way the concrete is allowed to cure affects its 
strength, then it is significant, too.

It is impossible to prove the absence of significance 
in data. Again, Paul makes the point that if he 
does not know the meaning of a language, to him, 
it sounds like gibberish (1 Corinthians 14:10–11). 
Something might sound like gibberish and yet be 
perfectly understood by another person who knows 
the language. Similarly, the events of our lives 
often seem very chaotic and without significance; 
but we know that if we love God, He is working all 
these things together for our good (Romans 8:28; 
Proverbs 16:33). In general, we cannot say that a 
data set has no significance unless we know that the 
ultimate source is truly random. While information 
often leaves a mathematical signature in the data 
(for example, traces of detectable patterns found in 
English text), this is merely the shadow, and not the 
substance, of information.

In summary, with objective ends (like turning 
a driveshaft), our metric can also be objective. The 

way alterations to the engine affect its torque and 
overall performance is often a rather simple matter. 
While we may not be able to exhaustively identify 
all information, we can identify much of it; and the 
metric here allows for incremental detection.

Literal vs. symbolic data
There is a critical distinction that we need to 

make for our purposes, which is between literal and 
symbolic data. Put simply, data is symbolic when it 
is full of symbols to things outside itself. It is literal 
when the pieces of data reference each other in 
mathematical or visual “webs” of interconnectivity. 
Failure to make this distinction can result, for 
instance, in unrealistically optimistic expectations 
regarding the ability of matter, via the varied 
environments and laws of chemistry, to self-organize 
into “networks” to form life and information (see 
Cronin and Walker 2016).

For example, in ASCII art, people “draw pictures” 
using only the letters and symbols on the keyboard 
with a monospace font (where every character is the 
same width). People can be very creative within these 
limitations. For an illustration of an elephant using 
only ASCII characters, please see fig. 1.

What is the value of this data? It is in the literal 
way that the symbols appear in physical proximity 
to each other when printed on a page or screen. For 
instance, the letter “a” was chosen as the elephant’s 
eye because it looks visually like an eye with an eyelid 
in that font; and this character was surrounded by 
spaces because of the visual effect; and the positions 
of the various lines and marks have to do with how 
they literally work together to produce the visual 
picture of an elephant. The two-dimensional shape 
mimics the physical shape of the elephant rather 
than using symbolic representation. The pieces of 
data are strongly self-referential. This is a good 
example of what we mean by literal data.

Fig. 1. ASCII art elephant. Art by Joan G. Stark. https://
www.asciiart.eu/animals/elephants.
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By contrast, symbolic data is full of symbols to 
things outside itself. Werner Gitt (2000, 85) limits 
the domain of information to those systems dealing 
with abstract references to reality (that is, coded 
messages, or symbols), as opposed to observations 
of reality which are direct. For example, consider 
the word “elephant.” This word is not used for any 
literal similarity between the letters and the animal. 
The letters are combined merely as a symbol which 
stands for the concept. The term “significance” 
includes the idea of symbol, especially in the more 
classical use of the word, where to “signify” meant 
to stand for something outside itself. In semiotics, 
the terms “signifier” and “signified” are still used 
in this sense. Thus, in a shallow sense, the concept 
of “significance” can be as simple as the meaning of 
an individual word in isolation (such as “elephant” 
standing for the animal); but this same idea of 
significance, in a deeper sense, can refer to the way 
in which words, put together, help further the end 
goal. For instance, the message “Feed the elephant 
a handful of peanuts for obedience” can have deeper 
significance to the zookeepers to the extent that it 
furthers the elephants’ obedience, thus promoting 
the overall success of the zoo. Language allows such 
symbols to be joined in complex relationships to 
reference real-world objects and concepts.

Data can be literal or symbolic to varying degrees. 
While the ASCII art is mostly literal, there is a sense 
in which you could say that it stands for the elephant 
by visual analogy when taken as a whole, even as 
opposed to an exact photograph, and is thus at least 
a little symbolic. Some words are onomatopoeic, 
meaning that they are chosen for sounding like the 
things they stand for, and are thus slightly literal (for 
example, “sizzle” or “zoom”). Typically, data is either 
almost entirely symbolic, or almost entirely literal. 
Our definition of “significance” assumes symbolic 
data, and thus excludes literal data from consideration 
(for example, we exclude images of fractals, or 
the elephant ASCII drawing). This difference will 
become important later in distinguishing our metric 
from Kolmogorov complexity.

Distinction
The second key concept in this proposed metric 

is distinction. While the first part, significance, 
is conceptual and philosophical, the second part, 
distinction, is entirely mathematical. Distinction 
is the uniqueness of the data, or its lack of internal 
repetition; that is, the non-repetitiveness of the letter 
patterns in the text. When all data being analyzed 
has already been identified as significant (per the 
mental, philosophical method above), then the level 
of distinction correlates to the information density 
of the significant text. It is an entirely intrinsic 

measurement, distinguishing it from classic Shannon 
information, which is based on the probabilities of 
the source which generates it. For our purposes, we 
do not need to know the probability distribution of 
the source or the general statistics of the language. 
We need only the message itself to measure its 
distinction. (Measurements are meaningful over full-
length messages, rather than over small, isolated 
pieces of text.)

To calculate the distinction of the message, we 
iterate through each character (the “cursor”) and 
determine its distinction, measured in bits. The 
distinction of the message is the sum for all individual 
characters, as seen in eq. 1.

where
i = the 1-based cursor position of the character under 
consideration. For the first letter in the message, 
i = 1, etc.
m = the total message length.
F(i) = the expectation fraction for that cursor position. 
(We will discuss how to calculate this next.)

That is, for each cursor character (at position i), we 
convert an expectation fraction (F(i)) into distinction 
bits by using the negative log, base 2, to get 
distinction in bits. This will look familiar compared 
with Shannon information, except that we are not 
dealing with probabilities in that sense, but only with 
the patterns intrinsic to the message itself.

To calculate the cursor expectation fraction F(i), 
we must take any applicable prefixes into account for 
each cursor character (position). A prefix is simply 
the text that comes immediately before the cursor 
character being considered. Let a given prefix length 
be notated with the variable j (that is, with a two-
letter prefix, j = 2). We need to calculate the prefix 
target fraction (t), which is the ratio of times a given 
prefix results in the same letter as the cursor. For 
example, if half the times s occurs in a message, it 
is followed by the cursor letter h, then the prefix 
fraction will be roughly 0.5 (1/2). This prefix target 
fraction (the variable t) is calculated using eq. 2.

where
x = the number of other prefix matches (or, the 
number of other times this prefix occurs and is also 
followed by the cursor character). For instance, if the 
cursor is a [SPACE] character, and the prefix under 
consideration is “the” (j = 3), then x is the number of 
other times the text “the” occurs within the message, 
while also followed by a [SPACE].
y = the number of other prefix occurrences which do 

( )( )2
1

log
m

i
d F i

=

= −∑ (eq. 1)

1
1

xt
x y

+
=

+ +
(eq. 2)
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not match the cursor, or in our example, the number 
of times “the” is found in the message while being 
followed by some character other than [SPACE].

In eq. 2, we include the cursor instance itself in the 
calculation (hence the +1 in both the numerator and 
denominator) to get the prefix fraction.

Next, we must calculate a “certainty fraction” (c) 
for the prefix under consideration. Roughly, the more 
a prefix match is likely to occur by “chance” alone (to 
use the term loosely), the less the certainty fraction. 
Patterns are less special the more “likely” they are. 
We calculate this certainty fraction c using eq. 3.

where
a = the character distribution fraction of the cursor. 
For example, if the cursor character is E, and if there 
are 5 Es in the message, and the message’s length 
is 79 characters total, then a = 5/79 for that cursor 
character.
x, y = the number of other prefix matches/non-matches 
(see notes on eq. 2).

The odds of a single other prefix matching the 
cursor by “chance” (loosely using the term) is simply 
the value a, since that is the frequency of the cursor 
character relative to the other characters in the 
message. The odds of a single prefix not matching 
is the inverse, (1–a). The odds of a given particular 
constellation of matches/non-matches is therefore 
ax· (1–a)y. However, there are many different ways 
we could arrange these matches and non-matches 
(permutations), which is what the factorial portion is 
considering. For all combinations of whole numbers 
(x, y) where x + y = z, the sum of the probabilities 
calculated here is exactly 1; or put another way, the 
probabilities are divided across all possibilities of 
matches/non-matches, with some more or less likely. 
Again, we use the term “probability” loosely, referring 
really to the patterns within the message contents.

To calculate the cursor expectation fraction F(i), 
we use the iterative equation; see eq. 4. Let n be the 
maximum applicable prefix length for the cursor 
(discussed below); the cursor’s expectation fraction 
will be the iterative result of eq. 4, where j = n. This 
iterative approach also quantifies the intuition that 
the longer a pattern continues, the more “specific” 
it gets, the stronger the pattern, and the lower the 
distinction going forward.

where
j = the prefix length under consideration.
fj–1 = the expectation fraction so far; that is, the result 
of the previous iteration.

tj = the target prefix fraction calculated in eq. 2, for 
prefix length j.
cj = the prefix certainty fraction calculated in eq. 3, for 
prefix length j.

We begin with j = 0 (no prefix) and increment j, 
terminating when either of these conditions is true:
1.	We terminate if the prefix contains no patterns 

in the next character which follows it. This is 
because we seek to measure redundancy. For 
example, suppose the prefix is “the;” there must 
be at least two instances of this prefix which are 
followed by the same character (they don’t have to 
be consecutive). If the prefix results in something 
different every time, then there is no pattern to 
measure.

2.	We terminate if this is the first prefix “match” 
(the first time this prefix has resulted in the 
same character as the cursor). We must measure 
the internal distinction of all content, including 
patterns the first time they occur; only in 
subsequent repetitions does it make sense to 
factor them in as redundancies. The exception is 
if “tj < fj–1;” in which case, we do factor this prefix 
in, because it is an “outlier” in the prefix pattern. 
This means the other prefix occurrences will have 
reduced distinction for repetition; and so, we should 
factor in the rarity of this prefix occurrence (just 
as we assign greater distinction to rare individual 
characters relative to common ones).
To see an example using the text of John 1:1, 

please refer to Appendix B, which details the 
measurement of select letters for illustration. It is 
interesting to compare different languages of the 
same translated text. For instance, John chapter 
3 (the entire chapter) measures at 7,325.6 bits of 
distinction in English, 6,645.4 bits in Greek, and 
6,082.3 bits in Latin (all caps). This is an average 
of 1.81 bits per character in English, 0.99 in Greek, 
and 1.79 in Latin. For calculation results using this 
computer program over various texts, including 
chapters or small books of the Bible, as well as 
random binary and hexadecimal data, see Appendix 
C. For the PHP computer program which measured 
these distinctions programmatically, see Appendix 
A. Appendix D contains quantitative comparisons of 
short sample texts among four metrics suitable for 
such comparison.

Under this definition, we can note a couple of 
interesting things that may happen when combining 
multiple messages into one. It is likely that 
combining message A and message B will yield a 
total distinction which is less than the sum of their 
individual distinctions when taken separately. For 
example, the string “abcdefg” has a total distinction 
of 19.65 (2.81 per character). The string “bcdefg” 
has a total distinction of 15.51 (2.58 per character). 

( )!1 (1 )
! !

x y x yc a a
x y
+

= − ⋅ − ⋅ (eq. 3)

1 1 0( ) ,j j j j jf f f t c f a− −= − − ⋅ = (eq. 4)
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Yet when combining them into a single string 
(“abcdefgbcdefg”), the total distinction is 22.8 (1.75 
per character), which is less than the combined 
distinction of each string taken alone. This is because 
the internal repetition is increased with the shared 
data between these two strings.

However, it is also possible for the total distinction of 
messages to be greater than the sum of each message 
taken separately. As an example, the string “aaaaa” 
has 0 distinction, as does “bbbbb.” But combining 
them (“aaaaabbbbb”) yields a distinction of 6.80 (0.68 
per character). This actually aligns with our intuition. 
On the one hand, if you have heard instructions 
before, a repetition adds little to the “information” of 
the message. On the other hand, having to constantly 
switch contexts (such as switching between English 
and Latin constantly in older texts) would be more 
mentally taxing, having a higher degree of distinction. 
Generally, in such cases, Latin (for example) is 
italicized to set it apart from the English, making it 
more predictable and easier to read.

Consider the letter ‘A’ repeated a million times in 
a row. Although this is a relatively large amount of 
data, it has no variety or distinction. If we increase 
the repetition from a million to a trillion (a million 
million), although we have increased the amount 
of raw data a millionfold, we have increased the 
distinction by nothing. On the other hand, truly 
random data would have very high distinction, with 
little pattern.

Information contained in raw (uncompressed) 
intelligent messages generally falls between these 
two extremes, containing a decent level of distinction, 
but also a lot of repetition. (While this is a practical 
reality in real-world information, it is not an essential 
characteristic for our purpose.) If you text your friend, 
“I will be there in fine minutes,” your friend knows 
that you meant “five minutes;” but this would not be 
possible if the message were maximally compressed. 
For instance, if you used numbers instead of spelling 
out the word and wrote, “I will be there in 6 minutes,” 
your friend would not know for sure whether you 
made a mistake or meant to send a precise time. 
The presence of redundancy is one safeguard against 
miscommunication, and natural languages make 
heavy use of it.

For reference, Genesis chapter 1 has about 4.9 
kilobits of distinction, with an average distinction 
of about 1.19 bits per character. John chapter 3 has 
about 7.3 kilobits, with 1.8 bits per character. Both 
passages were measured using sentence casing, no 
verse numbers, with paragraphs. Genesis 1 contains 
more redundancy than John chapter 3, or less relative 
distinction given its length.

Also, when we speak of distinction, we are not 
referring to Kolmogorov complexity. (For reference, 

Kolmogorov complexity is measured by the shortest 
computer program which can generate the text.) For 
instance, a picture of the Mandelbrot set has a high 
degree of visual complexity and yet can be generated 
with relatively simple computer instructions. 
However, these considerations do not apply in our 
case, because we require data which is full of symbols 
to things outside itself to be “significant.” While each 
pixel stands for the result of the calculation at those 
coordinates, the data is still interconnected in a 
mathematical “web,” related by literal mathematical 
and visual relationships. However, symbolic data does 
not work this way. For example, consider the word 
“car” in English. You have assigned integers to each 
letter: A = 1, B = 2, etc. If you were to mathematically 
modulate this word by adding 1 to each letter, that 
would translate as: c-to-d, a-to-b, r-to-s; and so 
“car” + 1 (adding one to each letter) becomes “dbs.” 
Any meaning of the new symbol would not be because 
of their mathematical connections. That works only 
with literal data.

Unwrapping data
When we measure significant distinction, it is 

against data in its “unwrapped” state. Data can be 
wrapped in layers of encoding and representation, 
but our concern is only with the final data which 
is intrinsically symbolic of things outside itself. In 
other words, when we say “significance,” we imply 
immediate extra-data significance; and thus, by 
our definition, we exclude all data wrapping from 
consideration. We care only about the heart of the 
data, which is immediately symbolic of things outside 
itself.

For example, suppose you have reserved a table 
at a restaurant, and your parents are on their way, 
and your mother sends you a text message, “Almost 
there, 5 minutes.” That’s 23 bytes of raw data (a byte 
is 8 bits; a bit is either a 0 or a 1), if encoded in UTF-8 
(for illustration; UTF-8 is a way of encoding letters 
into bytes). Now suppose instead of sending this text 
message, she sends you an audio file in the chat with 
2 seconds of recorded length where she says the same 
thing. For simplicity, let’s assume a relatively high-
quality MP3 recording, with a data rate that remains 
constant at 128 kbps (128 kilobits per second, or 
128,000 bits of data per second of audio). At 2 
seconds, that is 256 kilobits, or 32,000 bytes. This 
is over 1,300 times the size of the text, and yet they 
both communicate the same sentence. Intuitively, we 
know that the MP3 does not contain over a thousand 
times more information than the text; and this is due 
to data wrapping. The MP3 may include additional 
data such as tone of voice and background noise, 
but these things extend beyond the realm of our 
discussion, which is with strictly digital and objective 
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data significant toward a definite end (in our case, 
English text meant to inform).

In this example, the English text “Almost there, 5 
minutes” is transmitted as an analog signal, wrapped 
further in digital representation:

Wrap Layer 2: Digital MP3 (31 kilobytes, 256k 
bits / (8 * 1024))
Wrap Layer 1: Analog audio
Raw Data: Digital English text (23 bytes)
Significant distinction is always measured in 

relation to data in its fully unwrapped state relative 
to its end. The same concept as the MP3 would apply 
to video files and pictures. A video of kittens playing 
with a ball of yarn has much less information than 
a book written by Einstein, even if the book, in text 
format, is less than 0.1% the file size. Both audio and 
video recordings are essentially analog, even if they 
are wrapped digitally. (How the brain interprets such 
analog data into digital signals is likely inaccessible 
to us, placing it out of reach of more objective 
measurements of significant distinction.) No matter 
how many layers data is wrapped in, our concern is 
with the fully unwrapped data itself, in this case, in 
the form of digital English text.

As another example, security video footage contains 
much data, but it cannot be measured for information 
content unless an extra-data end is identified, beyond 
the mere preservation of the video files themselves. 
But if video footage becomes important in solving 
a case of bank robbery, then the unwrapped digital 
data that specifically helped in this case becomes 
significant to that end; but to measure its significant 
distinction, it must be unwrapped from its encoding 
as video, which can be somewhat subjective. One 
way to do this would be to describe the significant 
details of the video in a written language; that is, “At 
4:21pm, a masked man 6 ft2 in tall walks through 
the front door holding a gun . . .”, etc. Historical video 
recordings may contain meaning of a sort, but we 
cannot apply our metric until an end transcending 
the data is first identified. Otherwise, it does not fall 
within the domain of significant distinction.

Content vs. profit
We should note that the measure of information 

content is different from a measure of its profit (or 
value). If you have a bucket of sand, you can measure 
it by its volume, or you can measure it by its weight 
and density relative to other materials. Information 
is a different kind of entity, and our measure is 
analogous to volume in some ways; but we also factor 
in distinction, which is analogous to density or weight. 
But there is another key aspect to information which 
is outside our measure, which is profitability.

For example, Don Batten gives the example that 
the sentence “She has an automobile” contains 21 

characters; yet so does the phrase, “Sue has a red 
Porsche” (Batten 2017, under “Some thoughts about 
‘new information’”). The second sentence, however, 
is much more specific; and thus, it conveys more 
“information” in a sense, if we are talking about profit. 
This is because the purpose of these statements is to 
increase knowledge; and in the realm of knowledge 
acquisition, in this case, the specific is more valuable 
than the general. A detective also tends to value the 
specific over the general, as he must find out who 
robbed the bank or pulled the trigger. Yet sometimes, 
the general is more valuable, such as saying, “Every 
household in this subdivision has two automobiles,” 
which is more general yet applies more broadly, thus 
increasing the amount of “information” transmitted 
in a more concise way than listing each house in the 
subdivision one by one.

The measure of profit is highly subjective to the 
receiver. Suppose you lived in the year 1920 and 
heard, “Bob has purchased a new Model T.” This 
might sound quite specific to us living today, but in 
1920, about half the cars in America were Model Ts, 
and so it is not all that specific. If later, you heard that 
Bob had purchased a “black” Model T, that would add 
almost no informational value, because the Model 
Ts produced at that time were all black. When the 
end of information is to increase knowledge, then the 
measure of profitability, and even of specificity, are 
highly subjective to the receiver’s assumptions, and 
not strictly based on the raw nature of the facts being 
conveyed.

The point, however, is that significant distinction 
is a measure of information content, and not of 
information profit. The information structure found 
in the DNA molecule, for example, utilizes such a 
dense and highly profitable language that it must 
greatly surpass English text in its profitability; but 
such determinations are outside our scope here. We 
are dealing only with the parts of DNA which are 
interpreted sequentially, or as one digital character 
after the other. (It does not matter if it is left-to-right, 
right-to-left, or any other direction; it matters only 
that the letters are processed in sequence, one after 
the other.) Any additional considerations, such as the 
parts of DNA facilitating dynamic 3D folding, when 
they are not necessarily interpreted sequentially by 
the cell, likely contain additional sorts of information 
which transcend our measure here.

Application to functional complexity
While significance and distinction can apply 

to data, the concepts, when abstracted, can also 
apply to physical details of existing systems. This 
allows us to reasonably infer a minimum amount of 
significant distinction (instructional information) in 
the underlying code which generates the systems. 
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The usefulness of this will be discussed later.
Functional complexity can be seen as the analog 

in the physical realm of significant distinction in the 
realm of data. (This analogy parallels the comparison 
between “detail” and “data” made earlier.) We can 
define functional complexity as the sum total of the 
distinct details of a physical system which contribute 
toward it carrying out a particular end (or function). 
For example, the functional complexity of an engine 
includes all the details of the physical engine which 
aid it in turning the driveshaft.

Applying these concepts to functional complexity 
requires some abstraction in the ideas of “significance” 
and “distinction,” however. With physical systems, 
we are no longer speaking of symbol, and so we 
must use the term “significance” in a broader, more 
general sense if we wish to apply the same basic 
concept. Details are “significant” to the function (in 
this more abstract sense) if they contribute toward 
the performance of that function (or end). For 
instance, if you look carefully at a car engine and 
figure out how it works, even if you do not have a 
blueprint, you can infer that a great many details 
are “significant” to the engine’s proper running. You 
could measure the diameter of the pistons and then 
run experiments, either in reality or possibly using 
knowledge of chemistry and physics equations, to 
determine the range of acceptable tolerances before 
the engine’s performance degrades. The precision of 
tolerance, starting with the current actual diameter, 
gives us the specification for a significant detail about 
the engine.

We can also measure the distinction of physical 
systems. However, this is more subjective and 
requires us to recognize physical repetitions or 
patterns, and to serialize them accordingly, so that 
these patterns will be detected and accounted for. 
For instance, putting significance aside for a moment 
and speaking only of distinction, you could infer 
that the distinction of the shape of well-ordered ice 
crystals is very low compared with water before 
it freezes, because with well-ordered crystals, the 
molecules generally follow a repeating pattern. In 
Cronin and Walker’s Assembly Theory, for instance, 
since identical building blocks can be reused in this 
case and given the physical constraints of the low 
temperature which naturally forms these building 
blocks, the ice crystals would require little selection 
(Sharma et. al. 2023). Snowflakes contain more 
distinction, but even then, most of their beauty is 
from the repetition of the patterns; and thus, they 
have far less distinction than the random position of 
water molecules before the crystals formed. On the 
other hand, the individual grains of a pile of sand 
poured onto a table have a great deal of distinction 
under this definition, since each grain has its own 

orientation and position, and with little pattern. 
However, we should note that they are similar in 
respect to all being grains of sand, and the distinction 
is limited only to their individually unique shapes 
and orientations. This is like Assembly Theory’s 
emphasis on whether individual building blocks are 
highly reusable.

Thus, we can apply the underlying concept of 
significant distinction either to details or to data. 
It is more objective when applied to data. When in 
relation to physical details, we will call this concept 
“complexity” and when in relation to data, we will 
call this “information.” These definitions align 
closely with the general distinctive use of each word 
in everyday speech: complexity is to a car engine as 
information is to a blueprint. When referring to how 
a mousetrap works, we speak of complexity, whether 
little or much; but when we speak of the instructions 
for building a mousetrap, we speak of information, 
whether little or much.

Inferring instructional information from 
functional complexity

It is highly reasonable to infer a minimum level of 
instructional information from functional complexity. 
The complexity of a firefly implies a great deal of 
information in the DNA. Yet we must subtract 
external contributive preexisting complexities (part 
of the surrounding environment), which we will look 
at in a moment.

This does not work for ends which are themselves 
representations of digital data. For instance, to use 
our previous example, this does not work with pictures 
generated by a Mandelbrot set function. In this case, 
the complexity is far greater than the instructional 
information, but the end is data-bound; that is, the 
end is in the data itself. With functional ends, this 
is not applicable. While we can get emergent visual 
complexity from a simple mathematical formula 
(the Mandelbrot picture), we cannot get emergent 
functional complexity in that way. This needs more 
research and thought, but there are likely two main 
reasons.

First, functional requirements in the real world 
are rather simple. To make an abstract argument, 
to produce extreme functionality from simple 
information (as with the Mandelbrot set), it would 
require the surrounding context of the functioning 
system to be a sort of “inverse” of this mathematically 
emergent complexity; in which case, the resulting 
functionality would fit its surroundings as a hand fits 
into a glove. Both environment and machine would be 
based on relatively simple mathematical principles, 
merely as inversions of each other. However, this 
does not seem to be the way the real world is set up; 
and if it were in some case, we could probably detect 



300 Peter Rankin

it without too much difficulty. For instance, for a 
dragonfly’s wing (and all that goes into it, such as the 
nervous system, muscles, etc.) to propel it forward, 
it must do so in an air space which is, at best, of 
soup-like consistency, and at worst, very chaotic. The 
functional complexity of its wings simply cannot be 
mathematically emergent, because the consistency of 
the air cannot be so, in that way.

Second and related, functionally complex machines 
(such as car engines) are not strongly patterned the 
way that the Mandelbrot data is. If we analyze the 
Mandelbrot images, we will see a lot of repetitions, 
variations, and inversions of the same basic shapes. 
With functional complexity in the real world, we can 
reasonably rule out emergent mathematics from its 
lack of these kinds of patterns.

Thus, it is reasonable to infer a minimum 
level of instructional information by taking the 
functional complexity of the object and subtracting 
any contributive complexity. Royal Truman, in his 
theory of Coded Information Systems (CIS) goes 
into great depth on preexisting resources and other 
considerations which supplement the coded message 
itself (Truman 2012). One example of contributive 
complexity is that of the agents carrying out the 
instructions, to the extent it is used. For example, if 
the instructions are, “Make a kitchen table of X width 
and length,” because the carpenter already has a lot 
of knowledge gained by making past tables, these 
simple instructions rely on this inherent contributive 
complexity in the carpenter’s skillset. In general, 
if the agents are intelligent (for example, human 
factory workers), creativity and cleverness can also 
be dynamic contributive complexities, making up for 
a deficiency of instruction; but these are probably 
unquantifiable in many cases. Mindless agents, 
such as the components of a cell, are theoretically far 
easier to quantify in this regard.

Another type of contributive complexity is that of 
the surrounding environment, to the extent it applies. 
Truman notes that things like cell membranes can 
add to the coded message itself during interpretation 
(Truman 2012, under heading “Messages vs sensors 
in CIS theory”). This is outside the scope of our 
definition of information here, since our definition 
applies only to the digital data (the coded messages, 
in Truman’s model), not considering additional 
contributions by the receiver during interpretation. 
Thus, Truman’s definition of “information” is broader 
than ours here. But for example, if the product 
is coded to allow trial and error to adapt to its 
environment, then certain parameters can fine-tune 
themselves to the environment by its contribution. 
For example, God created dogs with the genetic 
ability to have hair of varying length through genetic 
recombination. Coupled with natural selection (and 

likely other mechanisms), this causes adjustments in 
the hair length of a community of dogs to suit their 
environment. In a cold region, dogs with longer hair 
survive better, and eventually, the genetic variants 
for shorter hair are filtered out of the gene pool. The 
preference of which hair length should dominate was 
not originally specified in the information, but it was 
tuned through input by the environment. However, 
this is trivial compared to the information needed for 
hair in the first place, long or short, and compared 
to the information allowing for genetic variety at all.

The level of functional complexity is almost 
always superseded by the amount of instructional 
information required to build it; which, in turn, 
is almost always superseded by the amount of 
intelligence required to generate the instructions. 
For example, to describe a car engine is difficult; but 
to understand all the instructions for assembling one 
from scratch is far more difficult; and to write these 
instructions in the first place is the most difficult 
task of all. In general, like a waterfall, intelligence 
cascades down into information, which cascades 
down further into functional complexity. Thus, given 
a pool of substantial functional complexity, it is most 
reasonable to infer that it cascaded down from a 
higher plane of information, which itself cascaded 
down from a higher plane of intelligence.

This principle of inferring information from 
functional complexity can be very helpful, for 
example, when discussing the information in DNA. 
One way to measure the information content in 
DNA would be to look at the data itself; but we 
can also infer DNA information by looking at the 
resulting complexity of the functional product, less 
any epigenetic or environmental contributions. This 
remaining complexity, which is the vast majority, 
implies at least this same amount of information 
content in the DNA, and almost certainly immensely 
more. For example, by studying a dragonfly, we notice 
all the design details that must be in place for it to 
function: the shape of the wings, the eyes, its sense 
of balance, the tail, and a host of other variables. 
If we can serialize these variables to their proper 
tolerances and couch them in a well-formed language, 
we can infer at least this amount of information in 
the original instructions. One benefit of this metric is 
that it need not be exhaustive. We can detect part of 
the information content without needing to quantify 
the entire amount.

As a simple example, perhaps you have been to a 
fast-food restaurant where the lid did not quite fit onto 
the fountain drink cup. Suppose that the rim is 10 cm 
in diameter, and that the tolerance for the diameter 
of the lid’s rim is 1 mm before the fit degrades. This 
is a window of 2 mm (1 mm either way), or a 2% total 
variation. Thus, the amount of distinction for this 
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literal number is ~5.6 bits (−log2(0.02)). If we know 
that the diameter of the lid was set via instructional 
information, and not by trial-and-error or a self-
referencing specification (for example, by creating 
the lid using the cup as a kind of mold), then we can 
reasonably infer at least 5.6 bits of information to 
specify the diameter of the lid. This is a conservative 
measurement, since it takes only relative diameter 
into account and not the absolute starting point (that 
is, it is likely that more than six yes/no questions, or 
bits, are required to get a diameter which is functional 
for the cup). See Truman 2012 for more detailed 
thought on such considerations. Further, we should 
factor in many more parameters: the thickness of the 
lid’s plastic, the material, the width of the cuts into 
which to insert the straw, the specifications for the 
bubbles on the top to punch in the type of drink, the 
circularity, the creases to add strength, etc. And this 
does not even consider the instructions surrounding 
these raw parameters.

Comparisons with Other Metrics
In his book Signature in the Cell, Stephen Meyer 

(2009, 362, 371) discusses many of these concepts. He 
speaks of “functional significance in the pattern of 
letters” and says, “If an improbable sequence produced 
a functional outcome, then it was also specified in the 
sense that Dembski’s method required.” This is the 
basic idea of what we mean here by significance. In 
his book In the Beginning Was Information, Werner 
Gitt (2000, 55) says, “Shannon’s theory of information 
is suitable for describing the statistical aspects of 
information, e.g. those quantitative properties of 
languages which depend on frequencies. Nothing can 
be said about the meaningfulness or not of any given 
sequence of symbols.” This also refers to the concept 
of significance as defined here.

In a paper entitled “Information as Distinctions: 
New Foundations for Information Theory,” David 
Ellerman (2013, 3.6) explores a metric he says is dual 
and convertible to and from Shannon information: 
“By solving the dit-count and the bit-count for p0 and 
equating, we can derive each measure in terms of the 
other . . . Thus the two notions of entropy are simply 
two different ways, using distinctions (dit-counts) 
or binary partitions (bit-counts), to measure the 
information in a probability distribution.” The sense 
of “distinction” by Ellerman is not what is presented 
here, although, as with Shannon information, it has 
similarities.

Shannon information
Shannon information shares similarities with our 

measurement of distinction, but it has key differences. 
Here are a couple of examples. First, classic Shannon 
information deals with probabilities regarding the 

sender or source, whereas we are looking only at 
the message on its own merits when it comes to 
distinction (though to first identify significance, we 
must use knowledge extrinsic to the data sequence 
itself).

For example, in their paper “Shannon Information 
and Kolmogorov Complexity,” Peter Grünwald and 
Paul Vitányi (2010, 2) write that with Shannon 
information, “it is only the characteristics of that 
random source that determine the encoding, not the 
characteristics of the objects that are its outcomes.” 
They go on to quote Shannon, who explains that 
semantics are excluded from consideration, and that 
his system is designed before the specific message to 
be sent is known (Shannon 1948).

Our measure of distinction is an intrinsic 
measurement, whereas probability, properly 
speaking as meant by Shannon, is extrinsic to the 
specific data set. For instance, the text “zzzzzzz” 
might have just as much Shannon information 
as a random block of text, or even more, given the 
rarity of the letter “z,” provided the random source’s 
probability distribution does not typically result 
in such orderly sequences. By contrast, significant 
distinction does not take the source into account at 
all, and thus measures no distinction, or no variety; 
and if this completely repetitive string is taken alone, 
it has no significant distinction.

A second example of a difference with Shannon 
information is that we exclude conditional probability 
for prefixes during that pattern’s first occurrence in 
a message. This differentiates our measurement 
here from others which use Shannon entropy in the 
classical sense. For instance, Clément Pit-Claudel 
outlines a Python script which calculates entropy 
of a text using n-grams, but the author notes that 
contamination can occur with longer values of n 
because this calculation does not make a special case 
for the first occurrence of a pattern. For instance, 
Pit-Claudel (2013, under “Experimental results”) 
writes, “In the graph presented above, it is therefore 
likely that the estimates for n over 5 or 6 are already 
plagued by a significant amount of sampling error; 
indeed, for any given n there are in total 27n possible 
n-grams consisting only of the 26 alphabetic letters 
and a space, which exceeds the size of the corpus 
used in this experiment as soon as n > 5.” (See 
also, Cover and Thomas 2006, 168–169.) For our 
purposes, the first occurrence cannot be considered a 
redundancy, but only subsequent occurrences. Thus, 
while our measure shares similarities with Shannon 
information, there are key differences.

Kolmogorov complexity
Kolmogorov complexity is a measure of the 

theoretically minimum underlying algorithmic 
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complexity of a data set. That is, it is a measure of 
the shortest possible computer program which could 
generate the data. Data sets which appear highly 
complex can sometimes have very little Kolmogorov 
complexity. As mentioned previously, an extremely 
detailed image of the Mandelbrot can be generated by 
a relatively short computer program, since the math 
for generating these images is rather simple. Our 
concept of distinction is different, however, because 
it deals with simple repetition of data, and not with 
algorithmic modulation.

Earlier, we considered why Kolmogorov 
complexity does not measure what we desire here. 
In summary, if the virtue of a data set is in its 
modulated mathematical relationships, then it is 
literal. In contrast, symbolic data stands for things 
outside itself; and if such a mathematical relationship 
did exist in the data, it would be incidental to our 
purposes and could be ignored anyway. Further, 
Kolmogorov complexity cannot be calculated in most 
cases due to the halting problem, but an intuitive 
metric of detected information must be accessible at 
a basic level.

Coded information systems
Royal Truman’s Coded Information Systems (CIS) 

theory measures the behavioral refinement of the 
target system through use of some coded message 
(Truman 2012, Figure 3). Truman’s metric is broader, 
and more abstract, than significant distinction.

Because CIS quantitatively measures final 
behavioral refinement, the metric will include 
any contributions of preexisting resources (that is, 
contributions of the target machinery implementing 
the message). By contrast, significant distinction 
excludes these preexisting resources, interested 
in the measure of information content in the coded 
message alone.

One interesting advantage of the CIS metric 
is that it is likely to factor out redundancies in the 
original coded message automatically. Because it 
measures behavioral refinement, by the time the 
coded message reaches this stage of effect, any 
extraneous redundancies in the message are likely 
to have been ignored (or combined) by the target 
system during interpretation and thus filtered out of 
the final metric. Significant distinction, on the other 
hand, must use math to filter out redundancy.

Werner Gitt’s definition
Significant distinction shares many similarities 

with Werner Gitt’s definition of information. His 
definition consists of five “layers” (or levels) of 
information. “Significance” corresponds rather well 
to the last three layers (particularly to semantics 
and apobetics, and to a lesser extent, to pragmatics). 

However, with significant distinction, we do not 
presuppose purpose or teleology but instead refer 
neutrally to the “end” to which the data is working. 
We can thus use significant distinction in a broader 
argument to demonstrate intelligent intent as a 
conclusion without having to assume it circularly 
beforehand. “Distinction” corresponds to the first 
two layers, and particularly to the first, statistics. It 
corresponds only incidentally to the second, syntax, 
because syntax forms the basis of the patterns or 
repetitions within the text, and these patterns affect 
its measure of distinction.

Specified complexity
A concept that appears quite similar at first glance 

is specified complexity. For convenience, in this 
section, SC will stand for specified complexity, and 
SD will stand for significant distinction. These two 
concepts are highly congruent in application; what 
yields a high score in one will likely be high in the 
other, and vice versa. However, they are essentially 
distinct, and their purposes are different as well. 
They are measuring completely different things.

First, SC relies on classic Shannon information as 
part of its formula. William Dembski (2024, under 
“Shannon and Kolmogorov Information,” paragraph 
5) writes, “The complexity in specified complexity 
is therefore Shannon information.” However, SD 
uses a modified intrinsic metric which is distinct 
from Shannon information. This makes SC more 
source-focused, while SD is more data-focused. For 
instance, William Dembski gives the example of ten 
people in a room who all confirm that their birthdays 
are January 1; in this case, the sequence has high 
complexity in his sense (“complexity” in SC refers to 
improbability; less probable events are considered 
more complex). In our sense, however, ten identical 
numbers (birthdays) would have no distinction, and 
thus, no information content as we mean it, if taken 
alone. SC is about the probability of the event being 
produced under some hypothesis, whereas SD does 
not consider this at all.

Second, with SC, the Kolmogorov complexity of 
the description (specification) is inversely correlated 
to (subtracted from) the specified complexity of the 
message (Dembski 2024, under “Specified Complexity 
as a Unified Information Measure,” paragraph 6 
beginning “With Ewert’s lead”; Dembski and Ewert 
2023, under 6.4 “Specification and Complexity”). 
In other words, the simpler the specification for 
the data, the lower the description’s Kolmogorov 
complexity, and the higher the specified complexity. 
That is, short descriptors are more “specific” (in this 
sense) than long descriptors. By contrast, SD does 
not use Kolmogorov complexity at all. (The halting 
problem is not an issue with SC, because the relation 
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is inverse, applied to the descriptor and not to the 
data; that is, the halting problem could result in a 
more conservative measurement of SC at times, but 
never in a more liberal one.)

Third, SC can apply to data-bound data (i.e., when 
the data’s value is in the patterns within the data 
itself), whereas SD requires extra-data significance 
to be considered information. A set of Fibonacci 
numbers qualifies as SC by virtue of its intrinsic 
data patterns, whereas it would not qualify as SD, 
not having extrinsic significance by itself. The same 
would go for 25 coin tosses of “heads” with a fair 
coin; it is very interesting and improbable, but taken 
alone, it contains no SD.

Fourth, SC focuses on descriptors of the products 
for specificity, whereas SD focuses on the ends. These 
are similar but not the same. For instance, in SD, the 
end may be to “turn the driveshaft;” but in SC, the 
descriptor may be “an internal combustion engine.” 
The complexity of describing the product is not a 
factor in SD specifically, whereas it can be a factor 
in SC.

In short, SC is concerned with improbability and 
simplicity of specification, whereas, strictly speaking, 
SD is concerned with neither. (However, it is probable 
that ends worth measuring in SD will be simple.) SD 
is concerned only with quantifying information in a 
particular sense which is often meant in everyday, 
intuitive speech, but with this sense only, and 
nothing more, taken alone. Though both concepts 
are highly congruent in interesting ways, they are 
fundamentally distinct measurements; and thus, 
they are compatible and can be used together in the 
same argument.

Conclusion
Significant distinction can be useful, including 

in some young-earth Christian creation arguments. 
First, it is a simple and objective measure which 
aligns well with intuition. Multitools can be very 
useful, but perhaps sometimes, a tool with a narrower 
purpose can be more precise. Maybe by separating 
out the concept of mere intuitive information from 
other factors, it can then be combined with others 
for greater force in certain settings. For example, 
perhaps it can more easily quantify what it would 
take to add new information to the human genome, 
or which mutations are objectively removing 
information; and thus, the argument of genetic 
entropy can be strengthened even more, further 
demonstrating deterioration and the necessity of 
recent creation. It could also provide one additional 
metric to support the claim that “information” as 
meant by creationists is indeed an objective entity at 
a basic level in many cases. Measuring the significant 
distinction of portions of DNA would require the 

expertise of geneticists to quantify portions which 
are significant and interpreted sequentially. For 
instance, the kinds of mutations which are beneficial 
by virtue of breaking or deactivating functionality 
reduce significant distinction objectively, and thus, 
they could not be used as examples to explain 
how evolution accounts for the rise of significant 
distinction in the first place.

Second, the concept of significant distinction 
aligns closely with the biblical ideas mentioned 
by Paul. What Paul describes in 1 Corinthians 14 
includes communication even by lifeless entities 
like musical instruments, possibly making this 
definition especially applicable to describing DNA, 
which is transmitted and carried out by unconscious 
chemical processes, yet while being true information, 
nonetheless. In the Bible, God seems to have included 
the basic keys for many amazing concepts; and this 
may be one such case.

Third, it is probable that we can easily add concepts 
to significant distinction to aid in an inference of 
intelligence. For example, perhaps the simpler the 
end, and the more complex the product, the stronger 
the implication of intelligence. Flight is a very simple 
end for a dragonfly (that is, this idea—of darting 
freely through the air in any direction—is simple 
enough to grasp as a concept); and yet the actual 
mechanics involved to achieve this, or the product, 
including its wing design, eyesight, body, tail, etc., 
are complex in the extreme. To imagine flight is 
easy, but to effect it is arduous. This argument 
would incorporate specified complexity, and it would 
also parallel irreducible complexity, which is where 
many parts work together such that if any did not do 
their job, the entire machine would fail. The famous 
example of irreducible complexity given by Michael 
Behe is the simple mousetrap; to function properly, 
it needs the platform, the hammer, the spring, the 
catch, and the holding bar. If any one of these is 
missing, the entire mousetrap’s function becomes 
useless (Behe 2006, 42).

In conclusion, significant distinction may be a 
biblical, intuitive, simple, incremental, and objective 
measure of information content. Presuming that the 
concept laid out here is accurately built upon the 
biblical criteria discussed in 1 Corinthians 14, this 
would be another example of the Bible’s supernatural 
insight, not only in the subjects of history, science, 
human relationships, and spiritual matters; but also, 
in the topic of information theory, and written in the 
first century.
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Appendix A. PHP computer program to calculate internal distinction of text.
1 <?php // Appendix A: A PHP program to measure internal distinction of text 

2 

3 // File name: distinction.php 
4 // Sample usage: 

5 // 

6 // php distinction.php "IN THE BEGINNING WAS THE WORD ..." 

7 // php distinction.php "../path/to/text/file.txt" 

8 

9 /** 
10 * The statistics of a particular prefix text within a message

11 */

12 class PrefixStats
13 { 

14 /** 

15 * The total number of times this prefix occurs within the message, with at least

16 * one character following (i.e., cannot be on the very end to be a prefix)

17 */

18 public int $Occurrences; 
19 

20 /** 

21 * The count of the next letters immediately following this prefix within
22 * this message; e.g., ["a" => 2, "e" => 12, ...], meaing that "a" follows

23 * this prefix twice in the message, "e" 12 times, etc.

24 */

25 public array $NextCharCounts = [];

26 

27 /** The positions of the first occurrences of each "next char". The ordinal 
28 * is measured at the start of the associated prefix occurrence. E.g.,

29 * ["a" => 1055, "e" => 145, ...], meaning that the first "a" following this

30 * prefix comes after the prefix beginning at position 1055, etc. Positions
31 * are 0-based (0 is the first position).

32 */

33 public array $NextCharFirstUses = [];

34 
35 /** 

36 * The position of the first occurrence of this prefix within the message.

37 * Positions are 0-based (0 is the first letter of the message).

38 */

39 public int $FirstUse; 

40 
41 /** 

42 * Get the fraction of times the prefix is followed by the specified

43 * character. I.e., if 1 out of 4 prefix occurrences is followed by
44 * an "a", then this fraction would be 0.25.

45 */

46 public function getNextCharFraction(string $char): float {
47 $ncc = $this->NextCharCounts[$char] ?? 0; 

48 return (float)$ncc / (float)$this->Occurrences;

49 } 
50 

51 /** 

52 * When building these prefix stats, register the occurrence of a character
53 * that follows the prefix (keeping track of the totals and first occurrences)
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54  *

55 * @param string $char The character following the prefix

56 * @param integer $prefixOrdinal The position of the prefix occurrence under

57 * consideration

58 */

59  public function registerNextChar(string $char, int $prefixOrdinal) {

60  $ncc = $this->NextCharCounts[$char] ?? 0;

61  if ($ncc == 0) {

62  $this->NextCharFirstUses[$char] = $prefixOrdinal;

63  }

64  $ncc += 1;

65  $this->NextCharCounts[$char] = $ncc;

66  }

67

68  /**

69 * Check whether this prefix contains any repetition (patterns after the prefix). If

70 * not, it is not applicable in our measurement.

71 */

72  public function containsRepetition(): bool {

73  foreach ($this->NextCharCounts as $char => $count) {

74  if ($count > 1) return true;

75  }

76  return false;

77  }

78 }

79

80 /** Measure the distinction of a string of text */

81 class Distinction

82 {

83 #region Private variables

84  /** The string being measured for distinction */

85  private string  $s;

86

87  /** Cache the length of the string for speed */

88  private int     $strlen;

89

90  /** An associative array of each character to its total count in the string;

91 * e.g., ['a' => 4, 'b' => 2, ...] */

92  private array  $charCounts  = [];

93

94  /** An associative array of character distribution fractions, or the fraction

95 * that each character takes of the entire message; e.g., ['a' => 0.03, ...] */

96    private array  $charDistributions  = [];

97 #endregion

98

99 #region Public variables

100  /** The calculation precision in digits (1k should be plenty for most situations) */

101  public int      $CalcPrecision      = 1000;

102

103  /** Very large unreduced prefix fractions take up a lot of calculation power per

104 * factorials; to help, the program can auto-reduce fractions to a given denominator

105 * for approximate measurements. About 400 should be plenty. */

106  public int  $ApproximatePrefixFra ction = 400;
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107 

108 /** Whether to write tracing output to the console */ 

109 public int $TraceLevel = 5;
110 

111 /** Cap the cache entries at this position (to avoid too much memory usage) */ 

112 public int $CacheCap = 1000000;

113 

114 /** The maximum prefix length that will be taken into consideration (performance) */ 

115 public int $MaxPrefixLength = 100;
116 

117 /** Log text for each character, which may be printed to the output depending on 

118 * settings. Also useful to allow printing of overview stats at the beginning. */
119 public array $CharLogs = []; 

120 

121 /** @param string $s The string to analyze for distinction */
122 public function   construct(string $s) {
123 // Normalize string for regex purposes 

124 $s = str_replace(["\n", "\r"], '`', $s);
125 $this->s = $s; 

126 $this->strlen = strlen($this->s);

127 
128 // Get the number of occurrences for each character 

129 for ($i = 0; $i < $this->strlen; $i++) {
130 $char = $this->s[$i]; 

131 if (!isset($this->charCounts[$char])) {
132 $this->charCounts[$char] = 0; 

133 } 
134 $this->charCounts[$char] += 1; 

135 } 

136 
137 // Calculate the character distribution fractions 

138 foreach ($this->charCounts as $char => $count) {
139 $this->charDistributions[$char] = (float)$count / $this->strlen;
140 } 
141 } 

142 

143 /** 
144 * Get the distinction of the string per this measurement, in bits

145 *

146 * @return float The distinction, in bits, of the given string
147 */

148 public function getDistinction(): float {

149 $total = 0.0; 
150 

151 // Loop calculating and summing the distinction of each character in the message 

152 for ($cursor = 0; $cursor < $this->strlen; $cursor++) {
153 $charLog = []; 

154 if ($cursor % 1000 === 0) echo "."; // Display progress every 1k chars
155 

156 $char = $this->s[$cursor]; // The character being analyzed 

157 $a = $this->charDistributions[$char]; // The character's frequency fraction 

158 $f = $a; // Which is also the initial expectation fraction 
159 



308 Peter Rankin

160 // Loop through any applicable prefixes, factoring in their "pulls" on the 

161 // expectation fraction 

162 for ($prefixLength = 1;
163 $prefixLength < $this->MaxPrefixLength; 

164 $prefixLength++ 

165 ) { 

166 // Make sure the prefix length is valid and applicable 

167 $prefixPosition = $cursor - $prefixLength; 

168 if ($cursor - $prefixLength < 0) break;
169 $prefix = substr($this->s, $prefixPosition, $prefixLength);
170 $ps = $this->getPrefixStats($prefix, $prefixLength);

171 $firstMatch = $ps->NextCharFirstUses[$char]; 
172 $target = $ps->getNextCharFraction($char);
173 $x = $ps->NextCharCounts[$char] - 1; // Number of _other_ matches 

174 $y = $ps->Occurrences - 1 - $x; // Number of non-matches 

175 $terminate = false; 

176 if ($ps->containsRepetition() == false) {

177 $terminate = true; // No redundancy to measure 
178 } else if ($firstMatch >= $prefixPosition) {

179 // If this is the first _match_, then we use the prefix fraction as 

180 // the target only if it falls below the char distribution fraction 
181 // (to account for the extra specificity needed in the rarity of this 

182 // character); otherwise, this prefix is not applicable. 

183 if ($target >= $f) {
184 $terminate = true; 

185 } 

186 } 
187 

188 // Run the calculation and adjust the expectation fraction 

189 $certainty = $this->getCertainty($a, $x, $y);
190 if ($this->TraceLevel >= 7) {
191 $charLog[] = "\n " 

192 . ($terminate ? '[terminate] ' : '') 

193 . "[j=$prefixLength " 
194 . ', x=' . $x 

195 . ', y=' . $y 

196 . ", t=" . number_format($target, 3)
197 . ', f[j-1]=' . number_format($f, 3)
198 . ', c=' . number_format($certainty, 3)
199 . ']'; 

200 } 

201 if ($terminate) break;

202 
203 $f = $this->pullNumber($f, $target, $certainty);
204 } 

205 
206 // Convert the expectation fraction into distinction bits 

207 $d = -log($f, 2);
208 $total += $d; 

209 

210 // Log the results, if applicable 

211 if ($this->TraceLevel >= 3) {
212 $charLog = array_merge([
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213 'd=' . number_format($d, 2)
214 . ' f=' . number_format($f, 3)

215 . ' pl=' . ($prefixLength - 1) 
216 ], $charLog); 

217 } 

218 $this->CharLogs[] = $charLog; 

219 } 

220 

221 echo "\n";
222 return $total;
223 } 

224 
225 /** Get the line-item detail logs to print */ 

226 public function getDetailLogs(): string {
227 $details = []; 

228 for ($cursor = 0; $cursor < $this->strlen; $cursor++) {
229 $c = $this->s[$cursor]; 

230 $showCursor = $cursor + 1; 
231 $detail = "[$showCursor] $c - " . implode(" ", $this->CharLogs[$cursor]);
232 $details[] = $detail; 

233 } 
234 return implode("\n", $details);
235 } 

236 

237 /** Associative array of cached [string Prefix => PrefixStats, ...] */ 

238 private array $prefixCache = [];

239 /** 
240 * Get the stats for a given prefix

241 *

242 * @param string $prefix The prefix whose stats to get
243 * @param integer $prefixLength For performance, provide length of prefix
244 * @return PrefixStats The prefix stats
245 */

246 private function getPrefixStats(string $prefix, int $prefixLength): PrefixStats {
247 $ps = $this->prefixCache[$prefix] ?? null; 

248 if (!$ps) {
249 // This prefix hasn't been cached yet, and so build it 
250 $ps = new PrefixStats();
251 

252 // Use lookaheads to include overlapping matches (more important in binary), 

253 // and assure that at least one character follows in the message 

254 $regex = '/(?=' . preg_quote($prefix, '/') . '.)/';

255 $numMatches = preg_match_all($regex, $this->s, $matches, PREG_OFFSET_CAPTURE);
256 if ($numMatches === false) throw new \Exception("Regex failed: " . $regex);
257 if ($numMatches === 0) throw new \Exception("No matches at all for prefix.");
258 
259 $ps->FirstUse = $matches[0][0][1]; 

260 $ps->Occurrences = $numMatches; 

261 foreach ($matches[0] as $match) {
262 $ordinal = $match[1]; 

263 $lastChar = $this->s[$ordinal + $prefixLength]; 

264 $ps->registerNextChar($lastChar, $ordinal);
265 } 
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266 

267 $this->prefixCache[$prefix] = $ps; 

268 } 
269 return $ps;
270 } 

271 

272 /** 

273 * Pull a number from one toward another linearly by a given fraction

274 *
275 * @param float $original The original number
276 * @param float $target The target number

277 * @param float $byFraction The fraction by which to pull
278 * @return float The number after being pulled toward the target
279 */

280 private function pullNumber(
281 float $original,
282 float $target,

283 float $byFraction
284 ): float {
285 return $original + (($target - $original) * $byFraction);

286 } 
287 

288 /** Cache the certainty calculations for combinations of (a, x, y) */ 

289 private array $certaintyCache = [];
290 /** 

291 * Get the certainty fraction for a given combination of (a, x, y), per Equation 2.

292 *
293 * @param float $a The character distribution fraction within the message
294 * @param integer $x The number of other prefix matches with the cursor

295 * @param integer $y The number of prefix non-matches with the cursor
296 * @return float The corresponding certainty fraction
297 */

298 private function getCertainty(float $a, int $x, int $y): float {
299 // Serve the cached value if available 
300 $cacheKey = number_format($a, 15) . ":" . $x . ":" . $y;
301 if (isset($this->certaintyCache[$cacheKey])) {
302 return $this->certaintyCache[$cacheKey];
303 } 

304 

305 // Large fractions can have excessive factorials; if configured, automatically 

306 // reduce them to a reasonable denominator. 

307 if ($x + $y > $this->ApproximatePrefixFraction) {

308 $total = $x + $y; 
309 $div = (float)$total / $this->ApproximatePrefixFraction;
310 $x = floor($x / $div);
311 $y = floor($y / $div);
312 } 

313 

314 // Calculate the certainty fraction given the probability of a specific 

315 // occurrence, taking into account permutations (see Equation 2). 

316 $permutations = $this->getPermutations($x, $y);

317 $a = number_format($a, 20);
318 $probability = floatval(bcmul(
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319 bcmul(
320 bcpow($a, $x, $this->CalcPrecision),
321 bcpow(
322 bcsub(1.0, $a, $this->CalcPrecision), $y,
323 $this->CalcPrecision), $this->CalcPrecision), 

324 $permutations, $this->CalcPrecision)); 

325 $certainty = 1.0 - floatval($probability);
326 

327 $this->certaintyCache[$cacheKey] = $certainty; 
328 return $certainty;
329 } 

330 
331 // Cache permutations for sets of (x, y), for faster processing speeds 

332 private array $permutationsCache = [];
333 /** 

334 * Get the permutations for given values of (x, y).

335 *

336 * @param integer $x The number of other prefixes which match with the cursor
337 * @param integer $y The number of other prefixes which do not match
338 * @return string The number of applicable permutations
339 */
340 private function getPermutations(int $x, int $y): string {
341 if (isset($this->permutationsCache[$x . ':' . $y]) == false) {
342 // We can simplify (x+y)!/(x!y!) somewhat by dividing out the 

343 // greater number in the denominator from the numerator; to, 

344 // product(y+1, ... y+x)/x!, or the opposite, if x is greater. 

345 $g = max($x, $y);
346 $l = min($x, $y);
347 $num = 1; 

348 $denominator = 1; 
349 for ($i = $g + 1; $i <= ($g + $l); $i++) {
350 $num = bcmul($num, $i, $this->CalcPrecision);
351 } 

352 for ($i = 1; $i <= $l; $i++) {
353 $denominator = bcmul($denominator, $i, $this->CalcPrecision);
354 } 

355 $val = bcdiv($num, $denominator);
356 $this->permutationsCache[$x . ':' . $y] = $val; 

357 } 

358 
359 return $this->permutationsCache[$x . ':' . $y];
360 } 

361 } 
362 

363 // Command prompt interaction 

364 if (!isset($ignoreCommandPrompt)) { // Allow calling this programmatically
365 $text = $argv[1] ?? ''; 

366 if (strlen($text) == 0) die("Must enter a string to analyze.\n");

367 if (strlen($text) < 2000 && str_ends_with(strtolower($text), ".txt")) {
368 if (!file_exists($text)) {
369 die('Could not find file: ' . $text . "\n");

370 } else {
371 $text = file_get_contents($text);
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372 } 

373 } 

374 $dc = new Distinction($text);
375 $dc->MaxPrefixLength = 500; 

376 $dc->TraceLevel = 10; 

377 $distinction = $dc->getDistinction();
378 

379 $summary = "Distinction detected: " . number_format($distinction, 10) . "\n";

380 $summary .= "Per character: " 
381 . number_format($distinction / strlen($text), 10) . "\n";
382 $summary .= "Character count: " . strlen($text) . "\n";

383 
384 $details = $dc->getDetailLogs();
385 

386 echo $summary . "\n" . $details . "\n" . $summary;
387 } 
388 
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Appendix B. 
Distinction calculation overview for text of John 1:1.

John 1:1 text:
IN THE BEGINNING WAS THE WORD, AND THE WORD WAS WITH GOD, AND THE WORD WAS GOD.

Breakdown of the distinction calculation for some of the cursor characters, for illustration:
•	 [1] “I”: No prefixes, and so the expectation fraction is simply the character distribution fraction (“a”). Since 
this message contains 4 I’s, and there are 79 letters total, a=4/79. The negative log base 2 is ~4.3 bits of 
distinction.
•	 [2] “N”: Out of 3/4 times “I” is used in this message, it also results in an “N”, as here; and so, for j=1 (prefix 
length of 1), t=0.75 per our equation. Since this is the first occurrence of this pattern, we can take it into 
account only if it is an outlier (greater distinction), and so we must terminate and ignore this pattern until the 
next time it is used. This is because a pattern does not lose all distinction simply for being repeated; the first 
occurrence must still be measured for distinction for accuracy.
•	 [3] “[SPACE]”: Here, a=16/79 (16 spaces out of a message of 79 letters). The prefix “N” (j=1) is used elsewhere 
with a slight pattern (the letter “D” follows this prefix twice). Further, x=0 (no other prefix occurrences result in 
a “T”), y=5 (5 other occurrences result in something else). Plugging these into our formulas, we get t=0.167 and 
c=0.677; this is the first occurrence of the prefix, but it is somewhat of an outlier (t<f[j-1]), and so we count it, 
and so f(1)=0.178. The next prefix length (j=2), prefix “IN”, has no redundancy (it results in something different 
each time), and so we terminate, and d(i)=-log2(0.178) = 2.49. 
•	 [4] “T”: 5/79, 3.98 bits. (We terminate at the first prefix because t>f(0).)
•	 [5] “H”: 5/79, 3.98 bits. (We terminate at the first prefix because t=1, and t>f(0).)
•	 [6] “E”: 5/79, 3.98 bits. (We terminate at the first prefix for the same reason; first pattern occurrences ought 
not count, for accuracy.)
•	 [7] “[SPACE]”: 16/79, 2.3 bits. We terminate at the first pattern (j=1) for the same reason; E usually precedes 
a space, meaning this is a pattern, but it is the first occurrence.
•	 [8] “B”: This contains a prefix (the space) which was used at least once before, but it resulted in a different 
outcome (the letter “T”). However, in this case, t>f(0), and so we terminate and ignore this prefix. a=0.013 
(1/79), and for j=1, x=0, y=15, t=0.063, which is greater than 0.013, and so we terminate, as this is the first (and 
only) pattern match.
•	 (Skipping to position 72 for a good illustration of many applicable prefix lengths...)
•	 [72] “W” (of last word “WAS” in verse). There are 7 W’s, and so a=0.089 (7/79). The applicable prefixes extend 
all the way back to 16 characters long (the text “D, AND THE WORD ” was used once prior in the message). 
For most of these (lengths 3-16), the target is 1 (100% of the time, they resulted in a “W”); and the certainty 
for these is about 0.9 (90%). This means that the expectation fraction will end up being almost exactly 1 by the 
time we factor in prefix length 16, and so distinction will be essentially 0. We terminate at j=17 because it never 
occurs elsewhere in the message (x=0, y=0), and thus no redundancy.

Complete Computer Output
For each letter, first the distinction is given in bits, followed by the expectation fraction (“f=”) and the 

maximum applicable prefix length (“pl=”). If there are applicable prefixes, then beneath these, each one is 
printed in brackets on its own output line. “pl=” stands for that particular prefix length; “c=” indicates the 
certainty fraction; and “f=” indicates the expectation fraction before this prefix was considered.

Distinction detected:    151.3426959325
Per character:           1.9157303283
Character count:         79
 
[1] I - d=4.30 f=0.051 pl=0
[2] N - d=3.72 f=0.076 pl=0 
      [terminate] [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984]
[3]   - d=2.49 f=0.178 pl=1 
      [j=1 , x=0, y=5, t=0.167, f[j-1]=0.203, c=0.677] 
      [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.178, c=0.364]
[4] T - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947]
[5] H - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000]
[6] E - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999]
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[7]   - d=2.30 f=0.203 pl=0 
      [terminate] [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973]
[8] B - d=6.30 f=0.013 pl=0 
      [terminate] [j=1 , x=0, y=15, t=0.063, f[j-1]=0.013, c=0.174]
[9] E - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=0, y=0, t=1.000, f[j-1]=0.063, c=0.000]
[10] G - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=0, y=4, t=0.200, f[j-1]=0.051, c=0.188]
[11] I - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.051, c=0.144]
[12] N - d=0.44 f=0.739 pl=1 
      [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984] 
      [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=0.739, c=0.000]
[13] N - d=3.72 f=0.076 pl=0 
      [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.076, c=0.326]
[14] I - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.051, c=0.229]
[15] N - d=0.44 f=0.739 pl=1 
      [j=1 , x=2, y=1, t=0.750, f[j-1]=0.076, c=0.984] 
      [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=0.739, c=0.000]
[16] G - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=0, y=5, t=0.167, f[j-1]=0.051, c=0.229]
[17]   - d=2.30 f=0.203 pl=0 
      [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.203, c=0.493]
[18] W - d=3.50 f=0.089 pl=0 
      [terminate] [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999]
[19] A - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
[20] S - d=4.72 f=0.038 pl=0 
      [terminate] [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
[21]   - d=2.30 f=0.203 pl=0 
      [terminate] [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959]
[22] T - d=2.06 f=0.240 pl=1 
      [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947] 
      [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.240, c=0.123]
[23] H - d=0.00 f=1.000 pl=2 
      [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000] 
      [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[24] E - d=0.00 f=1.000 pl=3 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999] 
      [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000] 
      [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[25]   - d=0.00 f=1.000 pl=4 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992] 
      [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [terminate] [j=5 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[26] W - d=1.19 f=0.437 pl=1 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [terminate] [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979]
[27] O - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954]
[28] R - d=4.72 f=0.038 pl=0 
      [terminate] [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992]
[29] D - d=3.50 f=0.089 pl=0 
      [terminate] [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992]
[30] , - d=5.30 f=0.025 pl=0 
      [terminate] [j=1 , x=1, y=5, t=0.286, f[j-1]=0.025, c=0.866]
[31]   - d=2.30 f=0.203 pl=0 
      [terminate] [j=1 , x=1, y=0, t=1.000, f[j-1]=0.203, c=0.797]
[32] A - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=1, y=14, t=0.125, f[j-1]=0.063, c=0.620]
[33] N - d=3.72 f=0.076 pl=0 
      [terminate] [j=1 , x=1, y=3, t=0.400, f[j-1]=0.076, c=0.760]
[34] D - d=3.50 f=0.089 pl=0 
      [terminate] [j=1 , x=1, y=4, t=0.333, f[j-1]=0.089, c=0.694]
[35]   - d=2.30 f=0.203 pl=0 
      [terminate] [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916]
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[36] T - d=2.06 f=0.240 pl=1 
      [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947] 
      [terminate] [j=2 , x=1, y=2, t=0.500, f[j-1]=0.240, c=0.833]
[37] H - d=0.00 f=1.000 pl=2 
      [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000] 
      [terminate] [j=3 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[38] E - d=0.00 f=1.000 pl=3 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999] 
      [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000] 
      [terminate] [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[39]   - d=0.00 f=1.000 pl=4 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992] 
      [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [terminate] [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
[40] W - d=0.42 f=0.750 pl=5 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979] 
      [j=3 , x=2, y=1, t=0.750, f[j-1]=0.743, c=0.979] 
      [j=4 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979] 
      [j=5 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979] 
      [terminate] [j=6 , x=1, y=0, t=1.000, f[j-1]=0.750, c=0.911]
[41] O - d=0.00 f=1.000 pl=6 
      [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954] 
      [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.428, c=0.996] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=0.998, c=0.996] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996] 
      [terminate] [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937]
[42] R - d=0.00 f=1.000 pl=7 
      [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [terminate] [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
[43] D - d=0.00 f=1.000 pl=8 
      [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.993, c=0.992] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=8 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [terminate] [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911]
[44]   - d=0.89 f=0.540 pl=1 
      [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916] 
      [terminate] [j=2 , x=1, y=1, t=0.667, f[j-1]=0.540, c=0.677]
[45] W - d=1.19 f=0.437 pl=1 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [terminate] [j=2 , x=1, y=2, t=0.500, f[j-1]=0.437, c=0.779]
[46] A - d=1.23 f=0.428 pl=2 
      [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954] 
      [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954] 
      [terminate] [j=3 , x=1, y=0, t=1.000, f[j-1]=0.428, c=0.937]
[47] S - d=0.00 f=1.000 pl=3 
      [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999] 
      [terminate] [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962]
[48]   - d=0.00 f=1.000 pl=4 
      [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.967, c=0.959] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.959] 
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      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.959] 
      [terminate] [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797]
[49] W - d=1.19 f=0.437 pl=1 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.437, c=0.169]
[50] I - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=0, y=6, t=0.143, f[j-1]=0.051, c=0.268]
[51] T - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=0, y=3, t=0.250, f[j-1]=0.063, c=0.178]
[52] H - d=0.00 f=1.000 pl=1 
      [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000] 
      [terminate] [j=2 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[53]   - d=2.32 f=0.200 pl=2 
      [j=1 , x=0, y=4, t=0.200, f[j-1]=0.203, c=0.596] 
      [j=2 , x=0, y=4, t=0.200, f[j-1]=0.201, c=0.596] 
      [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.200, c=0.000]
[54] G - d=4.30 f=0.051 pl=0 
      [terminate] [j=1 , x=1, y=14, t=0.125, f[j-1]=0.051, c=0.633]
[55] O - d=3.98 f=0.063 pl=0 
      [terminate] [j=1 , x=1, y=2, t=0.500, f[j-1]=0.063, c=0.833]
[56] D - d=3.50 f=0.089 pl=0 
      [terminate] [j=1 , x=1, y=3, t=0.400, f[j-1]=0.089, c=0.732]
[57] , - d=1.99 f=0.251 pl=1 
      [j=1 , x=1, y=5, t=0.286, f[j-1]=0.025, c=0.866] 
      [terminate] [j=2 , x=0, y=1, t=0.500, f[j-1]=0.251, c=0.025]
[58]   - d=0.05 f=0.967 pl=2 
      [j=1 , x=1, y=0, t=1.000, f[j-1]=0.203, c=0.797] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.838, c=0.797] 
      [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.967, c=0.000]
[59] A - d=0.01 f=0.996 pl=3 
      [j=1 , x=1, y=14, t=0.125, f[j-1]=0.063, c=0.620] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.102, c=0.937] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.943, c=0.937] 
      [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=0.996, c=0.000]
[60] N - d=0.00 f=1.000 pl=4 
      [j=1 , x=1, y=3, t=0.400, f[j-1]=0.076, c=0.760] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.322, c=0.924] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.949, c=0.924] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.924] 
      [terminate] [j=5 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[61] D - d=0.00 f=1.000 pl=5 
      [j=1 , x=1, y=4, t=0.333, f[j-1]=0.089, c=0.694] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.259, c=0.911] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.934, c=0.911] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.994, c=0.911] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.911] 
      [terminate] [j=6 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[62]   - d=0.00 f=1.000 pl=6 
      [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.540, c=0.797] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.907, c=0.797] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.981, c=0.797] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.797] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.797] 
      [terminate] [j=7 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[63] T - d=0.00 f=1.000 pl=7 
      [j=1 , x=3, y=12, t=0.250, f[j-1]=0.063, c=0.947] 
      [j=2 , x=1, y=2, t=0.500, f[j-1]=0.240, c=0.833] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.457, c=0.937] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.966, c=0.937] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.937] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [terminate] [j=8 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[64] H - d=0.00 f=1.000 pl=8 
      [j=1 , x=4, y=0, t=1.000, f[j-1]=0.063, c=1.000] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=1.000, c=1.000] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
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      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [terminate] [j=9 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[65] E - d=0.00 f=1.000 pl=9 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.063, c=0.999] 
      [j=2 , x=3, y=1, t=0.800, f[j-1]=0.799, c=0.999] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.800, c=1.000] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [terminate] [j=10 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[66]   - d=0.00 f=1.000 pl=10 
      [j=1 , x=3, y=1, t=0.800, f[j-1]=0.203, c=0.973] 
      [j=2 , x=3, y=0, t=1.000, f[j-1]=0.784, c=0.992] 
      [j=3 , x=3, y=0, t=1.000, f[j-1]=0.998, c=0.992] 
      [j=4 , x=3, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [terminate] [j=11 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[67] W - d=0.00 f=1.000 pl=11 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [j=2 , x=2, y=1, t=0.750, f[j-1]=0.437, c=0.979] 
      [j=3 , x=2, y=1, t=0.750, f[j-1]=0.743, c=0.979] 
      [j=4 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979] 
      [j=5 , x=2, y=1, t=0.750, f[j-1]=0.750, c=0.979] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=0.750, c=0.911] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=0.978, c=0.911] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.911] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [terminate] [j=12 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[68] O - d=0.00 f=1.000 pl=12 
      [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954] 
      [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.428, c=0.996] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=0.998, c=0.996] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.996] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [terminate] [j=13 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[69] R - d=0.00 f=1.000 pl=13 
      [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.999] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [terminate] [j=14 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[70] D - d=0.00 f=1.000 pl=14 
      [j=1 , x=2, y=0, t=1.000, f[j-1]=0.089, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.993, c=0.992] 
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      [j=3 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=5 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=6 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=7 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=8 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.992] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [terminate] [j=15 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[71]   - d=0.00 f=1.000 pl=15 
      [j=1 , x=3, y=3, t=0.571, f[j-1]=0.203, c=0.916] 
      [j=2 , x=1, y=1, t=0.667, f[j-1]=0.540, c=0.677] 
      [j=3 , x=1, y=1, t=0.667, f[j-1]=0.626, c=0.677] 
      [j=4 , x=1, y=1, t=0.667, f[j-1]=0.653, c=0.677] 
      [j=5 , x=1, y=1, t=0.667, f[j-1]=0.662, c=0.677] 
      [j=6 , x=1, y=1, t=0.667, f[j-1]=0.665, c=0.677] 
      [j=7 , x=1, y=1, t=0.667, f[j-1]=0.666, c=0.677] 
      [j=8 , x=1, y=1, t=0.667, f[j-1]=0.667, c=0.677] 
      [j=9 , x=1, y=1, t=0.667, f[j-1]=0.667, c=0.677] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=0.667, c=0.797] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=0.932, c=0.797] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=0.986, c=0.797] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=0.997, c=0.797] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=0.999, c=0.797] 
      [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [terminate] [j=16 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[72] W - d=0.00 f=1.000 pl=16 
      [j=1 , x=6, y=9, t=0.438, f[j-1]=0.089, c=0.999] 
      [j=2 , x=1, y=2, t=0.500, f[j-1]=0.437, c=0.779] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.486, c=0.911] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.954, c=0.911] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=0.996, c=0.911] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.911] 
      [terminate] [j=17 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[73] A - d=0.00 f=1.000 pl=17 
      [j=1 , x=2, y=4, t=0.429, f[j-1]=0.063, c=0.954] 
      [j=2 , x=2, y=4, t=0.429, f[j-1]=0.412, c=0.954] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.428, c=0.937] 
      [j=4 , x=1, y=0, t=1.000, f[j-1]=0.964, c=0.937] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=0.998, c=0.937] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.937] 
      [terminate] [j=18 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[74] S - d=0.00 f=1.000 pl=18 
      [j=1 , x=2, y=2, t=0.600, f[j-1]=0.038, c=0.992] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.595, c=0.999] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.999] 
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      [j=4 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [j=18 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.962] 
      [terminate] [j=19 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[75]   - d=0.00 f=1.000 pl=19 
      [j=1 , x=2, y=0, t=1.000, f[j-1]=0.203, c=0.959] 
      [j=2 , x=2, y=0, t=1.000, f[j-1]=0.967, c=0.959] 
      [j=3 , x=2, y=0, t=1.000, f[j-1]=0.999, c=0.959] 
      [j=4 , x=2, y=0, t=1.000, f[j-1]=1.000, c=0.959] 
      [j=5 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=6 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=7 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=8 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=9 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=10 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=11 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=12 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=13 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=14 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=15 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=16 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=17 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=18 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [j=19 , x=1, y=0, t=1.000, f[j-1]=1.000, c=0.797] 
      [terminate] [j=20 , x=0, y=0, t=1.000, f[j-1]=1.000, c=0.000]
[76] G - d=3.36 f=0.098 pl=1 
      [j=1 , x=1, y=14, t=0.125, f[j-1]=0.051, c=0.633] 
      [terminate] [j=2 , x=0, y=2, t=0.333, f[j-1]=0.098, c=0.099]
[77] O - d=0.05 f=0.964 pl=2 
      [j=1 , x=1, y=2, t=0.500, f[j-1]=0.063, c=0.833] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.427, c=0.937] 
      [terminate] [j=3 , x=0, y=0, t=1.000, f[j-1]=0.964, c=0.000]
[78] D - d=0.01 f=0.995 pl=3 
      [j=1 , x=1, y=3, t=0.400, f[j-1]=0.089, c=0.732] 
      [j=2 , x=1, y=0, t=1.000, f[j-1]=0.316, c=0.911] 
      [j=3 , x=1, y=0, t=1.000, f[j-1]=0.939, c=0.911] 
      [terminate] [j=4 , x=0, y=0, t=1.000, f[j-1]=0.995, c=0.000]
[79] . - d=6.30 f=0.013 pl=0 
      [terminate] [j=1 , x=0, y=6, t=0.143, f[j-1]=0.013, c=0.074]
Distinction detected:    151.3426959325
Per character:           1.9157303283
Character count:         79
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Content Format Length Distinction Average per Character

John 3 English 4,045 7,325.6 1.81

Binary (from English ASCII) 32,360 8,035.2 0.25

English (CAPS) 4,053 7,028.1 1.73

Greek 6,682 6,645.4 0.99

Latin (CAPS) 3,394 6,082.3 1.79

Genesis 1 English 4,117 4,914.9 1.19

Genesis 5 English 2,759 2,949.9 1.07

Colossians English 11,017 20,366.8 1.85

Binary (from English ASCII) 88,136 21,299.3 0.24

Gospel of John English 98,288 122,281.3 1.24

DNA Yeast gene 5,026 8,079.4 1.61

Random Data Binary 200 160.2 0.80

500 411.0 0.82

50,000 41,645.7 0.83

Hexadecimal 500 1,824.9 3.65

5,000 17,994.5 3.60

50,000 178,554.1 3.57

Appendix C. 
Sample Distinction Measurements for Selected Texts.

Bible passages were exported from the open-source computer program Xiphos, available from Crosswire 
at: https://xiphos.org/ . Translations used were: English, King James Version (KJV); Greek, Elzevir Textus  
Receptus (1624); Latin, Vulgate. For the first two entries regarding John 3, the English export was altered to 
be paragraph-format with no verse numbers, with a matching binary-formatted text file of chars “0” and “1” 
based on ASCII values for the corresponding text file. For all other Bible exports, a standard Xiphos export 
was used with minimal metadata output, and the translation information metadata message removed from 
the beginning of the text. Random data was taken either from freely available random data sources online 
or generated using PHP’s built-in cryptographically secure random_int function. The yeast gene measured 
was taken from a sample GenBank database entry available from the United States National Center for 
Biotechnology Information (available on the website for the National Institute of Health, NIH): 2025, https://
www.ncbi.nlm.nih.gov/genbank/samplerecord/ . Note that we only measure distinction here as an exercise; we 
do not seek to establish the significance of the entire dataset, which would require analysis by someone with 
the appropriate knowledge of genetics.
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Appendix D. 
Comparative Results of Selected Metrics of 
Information.

Here, we will compare the information measure of 
the following messages:

1.	The letter “z” repeated 100 times
2.	A random sequence of 100 letters and numbers
3.	The first 1,000 members of the Fibonacci 

sequence
4.	Text of John chapter 3
5.	Phone call with a request
We will compare these messages using four 

metrics: significant distinction, Shannon information, 
Kolmogorov complexity, and specified complexity. 
These four are well suited for quantitative 
comparison. We will not here consider Coded 
Information Systems (CIS) because it is a broader 
measure, extending beyond the coded message itself 
to include information added by the mechanisms of 
the receiver, etc. We will also not consider Werner 
Gitt’s definition in this appendix because it is multi-
faceted (with five “levels” of information) and not 
suited for this type of comparison (for example, see 
Gitt 2000, 124, under question “Q4: Please give a 
brief definition of information”).

The Letter ‘z’ repeated 100 times.
Summary of measurements:

1.	Significant distinction: 0 bits (N/A, no 
significance, no distinction)

2.	Shannon information: 1,040 bits
3.	Kolmogorov complexity: <= 248 bits (PHP)
4.	Specified complexity: >= 960 bits

Significant distinction
Because this message has no meaning outside 

itself, it contains no significance. Further, because all 
the letters are the same, it contains no distinction. It 
thus contains no information under this metric.

Shannon information
The frequency of the letter “z” (uppercase or 

lowercase) in English is about 0.074%, or about 1 
in 1,350 letters. This is 10.4 bits per occurrence if 
assuming constant probability distribution for each 
character. Multiplied by 100, this yields 1,040 bits of 
Shannon information. (For simplicity, we will not use 
n-grams for this calculation.)

Kolmogorov complexity
We can output 100 zs in sequence through the 

following PHP computer program:
<?php echo str_repeat(‘z’,100);

This program is 31 characters long, or 248 bits if 
using PHP.

Specified complexity
If assuming the probabilities given by the Shannon 

calculation above (as 1,040 bits), we then subtract the 
bits necessary to specify the sequence. We could write 
the English text, “z repeated 100 times.” If using 20 
bits per word (which is like how Dembski calculates 
specified complexity in some examples), we end up 
with roughly 80 bits to specify this sequence. We 
subtract this and get a lower bound of 960 bits.

Random Sequence of 100 Characters
Let this be a random sequence of 100 characters 

with equal probabilities for all English letters 
(uppercase or lowercase) and numbers.
Summary of measurements:
1.	Significant distinction: 0 bits (N/A, no significance)
2.	Shannon information: 595 bits (letter frequencies)
3.	Kolmogorov complexity: <= 912 bits (PHP)
4.	Specified complexity: 0 bits

Significant distinction
Unless we can detect significance in a data set, we 

cannot measure it for significant distinction. Random 
text is therefore outside the scope of significant 
distinction unless some sort of significance can be 
defined (that is, a randomly generated encryption 
key, for example).

Shannon information
If assuming a source known to choose randomly 

between uppercase and lowercase letters and 
numbers, then the bits of each character will be 
about 5.95 (26 uppercase, 26 lowercase, and 10 
numbers = 62 characters; -log2(1/62) = ~5.95). Thus, 
the Shannon information of 100 such characters is 
595 bits.

Kolmogorov complexity
Since this data is random, the shortest PHP 

program capable of outputting the sequence will 
likely be:

<?php echo “[TEXT]”;
This is 14 characters besides the text itself to be 

outputted; meaning it is 114 bytes long, or 912 bits.

Specified complexity
Because the text is random, it has no specificity (in 

the sense meant by specified complexity). Thus, there 
is no specified complexity, since the bits required 
to describe the sequence will match or exceed the 
improbability of the sequence itself.

First 1,000 Members of the Fibonacci Sequence
Summary of measurements:

•	 Significant distinction: 0 bits (N/A, no significance, 
literal and not symbolic data)
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•	 Shannon information: 525,000 bits (equal 
probabilities for 0-9 and SPACE)

•	 Kolmogorov complexity: <= 592 bits (PHP)
•	 Specified complexity: >= 525,283 bits

Significant distinction
The Fibonacci sequence, taken alone, is not 

significant of anything outside itself. (See the section 
in the paper on literal vs. symbolic data.) Thus, it is 
outside the realm of significant distinction.

Shannon information
For simplicity, we will assume an even chance for 

each of the 10 numeric digits (0-9) and the space, 
making the probability of each character 1/11, or 
about 3.46 bits. The first 1,000 Fibonacci numbers 
consist of 151,864 digits total (including spaces 
separating each number), or 525,363 bits. (By the end 
of the sequence, numbers are over 300 digits long!)

Kolmogorov complexity
We can write this with a relatively short PHP 

computer program:
<?php $a=0;$b=1;for($i=0;$i<1000;$i++){echo $b.” 
“;$a=$b;$b=bcadd($b,$a);}

This is a total of 74 bytes, or 592 bits.

Specified complexity
We could specify the sequence as: “first thousand 

Fibonacci numbers”; or, using the estimate of 20 
bits per word, a specification of 80 bits. Thus, the 
specified complexity is the Shannon information 
minus the specification bits, or 525,363–80 = 525,283 
bits (assuming even probability distribution for each 
digit).

Text of John Chapter 3
Summary of measurements:

•	 Significant distinction: 7,325.6 bits
•	 Shannon information: 8,560.9 (using sin-

gle-word frequency)
•	 Kolmogorov complexity: <= 17,784 bits (PHP, 

gzuncompress/base64_decode)
•	 Specified complexity: 8,500.9

Significant distinction
As Christians, we accept the significance of 

the entire Bible on faith; and we also experience 
the significance of much of it through personal 
experience. Thus, we take the entire text of John 
chapter 3 as significant. All that remains is to 
calculate its distinction. Running the text of John 
chapter 3 through the computer program, we get a 
measurement of 7325.6 bits.

Shannon information
Shannon information is based on the probabilities 

of the source, or sender; and thus, there are different 
ways of calculating it. Using a simple word-frequency 
method from a freely available database online, the 
“probability” of each word in isolation was taken, the 
bits calculated from that, and the results summed. 
N-grams of varying lengths could be used instead 
and would reduce the bits measured, provided 
a calculator was programmed. For this paper, it 
was programmed to use simple word frequency for 
simplicity, yielding 8560.9 bits.

Kolmogorov complexity
To calculate this, run the text of John 3 through 

PHP’s “gzcompress” method, and the output of 
that through “base64_encode.” Next, create a PHP 
program which simply reverses the procedure:
<?php echo gzuncompress(base64_
decode(‘. . .’));
A smaller file size could probably be achieved by 

using raw binary instead of base64-encoded text. As 
it is, this yields an upper bound of 17784 bits.

Specified complexity
Presuming that the specification of “John 

chapter 3” is sufficient, using the conservative 20 
bits per specification word, this leaves us with 60 
bits of specification subtracted from the Shannon 
information of the text for 8500.9 bits.

Phone Call
(Neighbor) Hi, I am out of town and need to ask you 
to do me a favor for my dog. Hold on, someone is at 
the door. Who is it? It’s the pizza delivery man, hold 
on a second. Great, thanks, yes, these pizzas look 
correct. Here’s a tip. You’re welcome! Okay, let me 
set these pizzas down on the table. Okay, I’m back. 
Could you feed my dog for me tonight? The food is 
in the garage in the large plastic bucket. Thanks!
Summary of measurements:

•	 Significant distinction: 648 bits
•	 Shannon information: 919 bits (single-word 

frequencies)
•	 Kolmogorov complexity: <= 3,256 bits (PHP)
•	 Specified complexity: >= 669 bits

Significant distinction
Identifying the end of this phone call as helping 

the neighbor’s dog, we can eliminate the entire part 
of the conversation regarding the pizza:

(Neighbor) Hi, I am out of town and need to ask you 
to do me a favor for my dog. Hold on, someone is at 
the door. Who is it? It’s the pizza delivery man, hold 
on a second. Great, thanks, yes, these pizzas look 
correct. Here’s a tip. You’re welcome! Okay, let me 
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set these pizzas down on the table. Okay, I’m back. 
Could you feed my dog for me tonight? The food is 
in the garage in the large plastic bucket with the 
lid. Thanks!
This leaves us with the text:
(Neighbor) Hi, I am out of town and need to ask 
you to do me a favor for my dog. Could you feed my 
dog for me tonight? The food is in the garage in the 
large plastic bucket with the lid. Thanks!
Running this through our PHP program to perform 

our calculation, we get a distinction of 648 bits. For 
a detailed example of performing this calculation 
by hand using another text, please see Appendix B. 
Here, we will demonstrate the distinction calculation 
for a few example letters. To start with, we will 
analyze the second and final occurrence of the word 
“dog” (positions 100-102):
•	 “d”: There are 9 d’s in a message with a total 

length of 194; making the expectation of “d” 
9/194 = 0.046 expectation fraction with no prefix. 
The 1-letter prefix is [SPACE]; in two other cases, 
[SPACE] is followed by “d”, and in the other 39 
cases, it is followed by something else (x = 2, y = 39). 
Thus the 1-character prefix expectation t = 0.071. 
Using our iterative equation, this adjusts our 
expectation fraction to 0.064. For a prefix length of 
2, or “y[SPACE]”, both times this prefix occurs, it 
results in the same letter, “d”; thus, x = 1, y = 0, t = 1, 
c = 0.954; increasing the expectation fraction to 
0.957, per our equation. By the time the maximum 
applicable prefix length is reached (length 4, since 
“[SPACE]my[SPACE]” occurs elsewhere), the 
expectation fraction has reached 1.00, resulting 
in virtually no distinction for the letter “d” in this 
instance.

•	 “o”: The same applies to this letter, except that the 
maximum prefix length reaches 5. The only other 
time “[SPACE]my[SPACE]d” occurs (earlier), 
it also results in an “o”, thus having virtually no 
distinction.

•	 “g”: Same (virtually no distinction), except the 
maximum applicable prefix length is 6.

•	 . . .
•	 [Position 183, “l” for “lid”] “l”: There are 4 ls 

(lowercase L) out of 194 total characters; making 
the no-prefix expectation 4/194 = 0.021. With prefix 

length 1, the [SPACE] is followed once elsewhere 
by the same letter “l”, and 40 other times by a 
different letter; thus x = 1, y = 40, t = 0.048, c = 0.633. 
With a prefix length of 2, x = 1, y = 6, t = 0.250, and 
c = 0.873, since the two-letter prefix (“e[SPACE]”) 
occurs 7 other times, once matching the cursor, 6 
times not matching. We continue with this until 
we reach the maximum applicable prefix length 
of 5, where x = 1, y = 1, t = 0.667, c = 0.960. The six-
letter prefix occurs nowhere else in the message, 
and thus we terminate the iterative function, with 
the expectation fraction ending at 0.666, and a 
distinction of 0.59 bits.
When we add together all the bits for each 

character, we measure 648 bits of distinction total.

Shannon information
If using the single word probabilities, and taking 

the entire message (since with Shannon information, 
we do not discriminate based on significance), we 
calculate 919 bits. Another method would be to 
calculate the probabilities of each letter based on 
letter frequency, which would result in a higher 
measurement; or we could use n-grams, which would 
likely result in a lower measurement. For simplicity, 
we use the single-word probability calculation based 
on open data available online.

Kolmogorov complexity
Using the same method as the previous example 

(using base64_encode and gzcompress), the program 
is 407 bytes, or 3,256 bits.

Specified complexity
Presuming that a suitable specification can be 

found in 10 words, with 20 bits per word as a safe 
estimate, this would subtract 200 bits, leaving 
at least 719 bits. Assuming 2^50 other possible 
messages matching a suitable specification, we are 
left with 669 as a conservative lower bound. However, 
this is based on guesswork and depends on the 
chance hypothesis chosen (e.g., word probabilities, 
character probabilities, n-grams, or some other 
chance hypothesis). Yet this rough estimate should 
be suitable for conceptual comparison.
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