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Introduction
Xenarthrans are animals with elongated skulls, 

small brains, and a unique vertebral process 
called the xenarthrous articulation, present in the 
posterior portion of the trunk that aids in digging 
(Oliver et al. 2016). Furthermore, they have a low 
body temperature, low metabolic rate, and intra-
abdominal testes. They are separate from all other 
mammals because of their reduced dentition, along 
with reduced enamel (Gaudin and Croft 2015). They 
are so different from other mammals, that it was 
suggested that they belong to their own group besides 
all other placentals (Delsuc et al. 2002; Novacek 
1992). Based on these considerations, these animals 
likely form an apobaramin.

Superorder Xenarthra is made up of two 
orders, Cingulata (armadillos) and Pilosa (hairy 
xenarthrans), itself made up of two suborders, 
Folivora (sloths) and Vermilingua (anteaters). The 
NCBI database (https://www.ncbi.nlm.nih.gov/
nucleotide) contains data for 37 xenarthran species, 
although most authors count 31 extant species: 
namely 21 armadillos, four anteaters, and six sloths, 
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which live mainly in North and South America 
(Anderson and Handley 2001).

Armadillos are a group of omnivorous and 
insectivorous animals with flexible body armour. 
An extinct group of large-sized armadillos, called 
glyptodonts are, according to Mitchell et al. (2016) 
closely related to the subfamily Euphractinae 
(six-banded, dwarf, and hairy armadillos). Extant 
Cingulata can be divided into two families, 
Dasypodidae and Chlamyphoridae, the former made 
up of a single genus, Dasypus, whereas the latter 
is made up of three subfamilies, Chlamyphorinae 
(fairy armadillos), Euphractinae, and Tolypeutinae 
(naked-tailed, giant, and three-banded armadillos) 
(Gibb et al. 2015).

Anteaters are small to large-sized animals that 
are specialized in feeding on insects, such as ants 
and termites. They are characterized by long, thin 
toothless snouts, with a thin, flat saliva-coated 
tongue used to catch its insect prey. Hence the name 
Vermilingua, or “worm tooth.” The front feet have 
large claws on the third digit, which the animal uses 
to break down ant and termite mounds. The body has 
dense fur, and the tail is long.
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There are various types of sloths, classified based 
on their lifestyle. Some authors distinguish between 
two genera of tree sloths: the three-toed sloths 
(Bradypus) and the two-toed sloths (Choloepus) 
(Gaudin 2004). Tree sloths are medium-sized folivores 
that live in trees and can hang upside down with 
their rigid hook-like claws. Ground sloths live on the 
ground and are either herbivores or omnivores. Only 
one species of sloth lives in the water, Thalassocnus, 
which is extinct. 

Various authors differ as to which groups are related 
to one another, and which groups are monophyletic, 
such as Dasypus, Euphractinae (Euphractus, 
Chaetophractus, and Zaedyus), or Tolypeutinae 
(Tolypeutus, Cabassous, and Priodontes) (Billet et 
al. 2011; Möller-Krull et al. 2007). Resolving the 
baraminic relationships between Cingulata and other 
xenarthrans is a worthwhile pursuit. Xenarthra 
probably represents an apobaramin consisting 
of at least three groups, within which individual 
holobaramins and monobaramins may be discerned. 
Besides the 37 extant species, 200 extinct genera of 
Xenarthra have been noted (Möller-Krull et al. 2007). 

Interestingly, mitochondrial DNA has been isolated 
from a species in the glyptodont genus Doedicurus 
(Mitchell et al. 2016). Ancient DNA from these species 
might help resolve baraminic relationships between 
extant and extinct armadillo species. Ancient DNA 
has also been isolated from two extinct ground sloth 
species, the Shasta sloth (Nothrotheriops shastensis), 
and Megatherium americanum, which both come 
from the Family Megatheriidae. Poinar et al. (2003) 
found that these two ground sloth species were most 
similar to two-toed sloths (Megalonychidae) based 
on the alignment of three concatenated nuclear 
genes, the von Willebrand Factor (vWF), the cAMP-
responsive element modulator gene (CREM), and 
phospholipase C, β 4 (PCB4).

Ancient DNA has been analyzed in previous 
baraminology studies. For example, Cserhati (2023) 
amalyzed mitochondrial DNA (mtDNA) from Homo 
heidelbergensis to classify it as a member of the 
human holobaramin.

The purpose of this baraminology study is to 
analyze baraminic relationships within Xenarthra 
based on mtDNA sequence similarities, and two 
morphological character sets. Xenarthrans probably 
represent an apobaramin, and it will be worth 
determining what holobaramins and monobaramins 
are present in this group of animals.

Materials and Methods
Sequence data

The mtDNA sequences of 35 extant and 2 extinct 
Xenarthra species were downloaded from the 
Organelle Genome Browser at the NCBI Database 

website at https://www.ncbi.nlm.nih.gov/genome/
organelle. One ancient DNA sequence was downloaded 
from the Nucleotide Database at NCBI, belonging to 
Doedicurus sp. (accession number KX098449). 

This particular 15,936 bp long sequence consisted of 
44.9% undetermined base pairs (Ns). In order to retain 
this sequence in the data set, those portions of the 
multiple alignment created from the mtDNA sequences 
were cut out for all species where there were Ns at 
those positions. Delsuc et al. (2001) also removed indels 
and hypervariable regions from three gene regions 
(ADRA2B, BRCA1, and vWF) that they analyzed to 
study phylogenetic relationships within Xenarthra.

The analysis with these self-same sequences was 
also carried out without making the cuts. This was 
done to verify that making the cuts does not change 
the clustering results.

Morphological character sets
A morphological data set containing 125 characters 

for 22 extant and extinct armadillo species was taken 
from Billet et al. (2011). Character states were coded 
from 0–4, and missing values were represented with 
a ‘?’ symbol. Distance Correlation Analysis (DCA) 
and Classic Multidimensional Scaling (MDS) were 
used to analyze this data set. Pearson correlation 
and baraminic distance were selected, and a 
minimum character relevance cutoff value of 0.75 
was chosen, to retain as many characters as possible. 
After this cut, 99 characters remained (79.2% of the 
original 125). The Partition Around Medoids (PAM) 
algorithm was used to generate the Silhouette plot, 
seen in Supplementary fig. 1.

A second morphological data set containing 225 
craniodental characters for 46 xenarthran species 
(armadillos and sloths) was taken from Appendix 3 of 
Gaudin (2004). Several taxa had to be excluded, since 
a large proportion (> 15%) of their characters were 
undefined or missing (‘?’), these include Cyclopes, 
Myrmecophaga, Palaeomyrmidon, Pholidota, 
Protamandua, and Tamandua. Glossotherium was 
also removed because this taxon did not have all 
225 characters in the data set. Distance Correlation 
Analysis (DCA) and Classic Multidimensional Scaling 
(MDS) were used to analyze this data set as well. 
Pearson correlation was selected, and a minimum 
character relevance cutoff value of 0.75 was chosen, 
after which 169 characters remained (75.1% of the 
original 225). The Partition Around Medoids (PAM) 
algorithm was used to generate the Silhouette plot, 
seen in Supplementary figs. 1 and 2.

Software
The 38 mtDNA sequences were aligned using the 

ClustalW software. Heatmaps were created using the 
“single” clustering algorithm using the “heatmap” 
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function in R. The elbow plot was created using the 
‘fviz_nbclust’ function. The Gap Statistic method was 
employed to estimate the optimal number of clusters 
using the ‘clusGap’ command in R using the ‘kmeans’ 
clustering algorithm. R version 4.1.0. was used to 
analyze the data and generate plots. 

The Billet et al. (2011) and Gaudin (2004) data sets 
were analyzed using the Baraminology and Cluster 
Analysis (BARCLAY) software available at https://
coresci.org/barclay (Wood 2020). The Kinemage, Next 
Generation (KING) software was used to generate 
the multidimensional scaling (3D MDS) plot (Chen, 
Davis, and Richardson 2009).

Supplementary data availability
The supplementary figures and files generated 

during this analysis can be found online at the Zenodo 
website at https://zenodo.org/record/11671349.

Results
Morphological analysis

The Billet et al. (2011) data set was analyzed 

using the BARCLAY algorithm, as described in 
the Materials and Methods section. The average 
silhouette width for PAM analysis with two clusters 
was 0.25, compared to 0.19 for three clusters, 0.17 for 
four, and only 0.09 for five clusters (Supplementary 
fig. 1). The Hopkins statistic was only 0.687, which 
denotes fair clustering. Thus, two putative baramins 
were assumed in the rest of the analysis. The 
baraminic distance plot can be seen in fig. 1, and the 
corresponding multidimensional scaling plot can be 
seen in fig. 2. Additional results from the BARCLAY 
analysis can be found in Supplementary File 1 online.

What these figures show is that the 22 species 
can be divided into two putative holobaramins, 
a larger one of 14 species (Peltephilus, Vassallia, 
Propalaeohaplophorus, Eutatus, Chlamyphorus, 
Zaedyus, Prozaedyus, Paleuphractus, 
Macroeuphractus, Proeuphractus, Doelotattus, 
Proeutatus, Euphractus, and Chaetophractus), and 
a smaller one of only six (Tolypeutes, Kuntinaru, 
Dasypus, Stegotherium, Priodontes, Cabassous). 
These two groups largely show continuity within 

Fig. 1. Baraminic distance plot based on the armadillo character matrix from the Billet et al. (2011) data set. A larger 
cluster of 14 armadillo species can be seen in the upper right. A smaller group of six armadillo species separated 
by significant discontinuity can be seen in the lower left. There is one instance of morphological continuity between 
Tamandua (Vermilingua) and Priodontes, but Tamandua is also discontinuous with most genera in the large second 
group of armadillos. Bradypus (Folivora) lack continuity with all armadillos and shows discontinuity with one of 
them (Doellotatus).
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themselves and a substantial amount of discontinuity 
between them. Furthermore, Bradypus (sloth) 
does not appear to group with either the larger or 
the smaller cluster but shows discontinuity with 
Doellotatus from cluster 1. There is only one instance 
of continuity between Tamandua (anteater) and 
Priodontes from the smaller cluster, but Tamandua 
is also discontinuous with most genera in the larger 
cluster of armadillos. Thus, Bradypus and Tamandua 
probably belong to separate groups.

In fig. 2 we see that the larger and smaller armadillo 
clusters separate from one another quite well in the 
multidimensional scaling analysis. The position of 
Eutatus may be somewhat ambiguous (somewhere 
in the morphospace between the two clusters). This 
may be because this taxon shows continuity with 
Kuntinaru in the baraminic distance analysis (fig. 1). 
Its significant correlation is 0.454 with Kuntinaru, 
whereas it shows no correlation with the rest of the 
smaller cluster.

The Gaudin data set was analyzed with the 
BARCLAY algorithm. The results can be found in 
Supplementary File 2 online. The Silhouette plot can 
be seen in Supplementary fig. 2, and the baraminic 
distance plot can be seen in fig. 3. It is somewhat 
ambiguous as to whether there are two or three 
clusters in the data. The average silhouette width 
was 0.33 for three clusters, whereas it was 0.35 for 
two. Therefore, the rest of the analysis was performed 
on two clusters.

One group is very visible in fig. 3, whereas the second 
larger group appears to be less well-formed. Extant 
species have their Latin names in all capital letters. 

The smaller, better-formed group consisting of 
seven species in the upper right includes species 
from Cingulata. In the bottom left, there are 32 
species, which make up the less well-formed larger 
group. These 32 species appear to form two possible 
monobaramins. Ten of the larger group of 32 species 
are extinct sloths, which seem to form a monobaramin. 

Fig. 2. Multi-Dimensional Scaling (MDS) plot of two armadillo groups (red and green), with 14 and six species, 
respectively. Tamandua (Vermilingua) is in yellow and Bradypus (Folivora) in blue.
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These belong to the families Mylodontidae and 
Scelidotheriidae.

The remaining 22 species include both ground 
sloths and tree sloths. Here, the two extant sloth 
groups, Choloepus (two-toed sloths) and Bradypus 
(three-toed sloths) belong to this same larger 
group, indicating that since there is continuity 
between them, then they must belong to the same 
holobaramin. The 32 sloth species are very spread 
out in the principal component analysis (PCA) plot in 
Supplementary fig. 2.

The reason it may seem that there are two separate 
monobaramins within the larger sloth holobaramin 
of 32 species is that seven of these species are extinct 
species. Only Nematherium from the smaller sloth 
group of ten species shows significant continuity with 
seven species from the larger sloth group in the lower 
left of fig. 3. Conversely, only Octomylodon from the 
larger sloth group shows significant continuity with 
five species from the smaller group of sloths. 

Fig. 4 shows the multidimensional scaling plot 
showing the 39 species analyzed in the Gaudin 
data set. There is a clear separation between the 
armadillos and the sloths. However, as can be seen 
in Supplementary fig. 3, the two putative sloth 

monobaramins also seem to separate from one 
another.

Mitochondrial DNA analysis
For the mtDNA analysis, the mitogenomes of 38 

species were aligned, including 37 xenarthrans and 
Monodelphis domestica (opossum). After removing 
the undefined bases from the alignment caused 
by Doedicurus, a sequence identity matrix was 
calculated. The results of this analysis can be found 
in Supplementary File 2. The Hopkins clustering 
value is 0.789, which indicates good clustering. 

The Hopkins clustering value calculated on the 
alignment without cutting out the polyN stretches 
of DNA from the mtDNA sequence of Doedicurus 
was 0.844. The clustering results were the same 
irrespective of whether the polyN DNA segments 
were cut or not.

Based on mtDNA and nuclear evidence analyzed 
by Delsuc, Stanhope, and Douzery (2003) and 
Delsuc et al. (2012), three armadillo baramins may 
exist: namely Dasypodinae, Tolypeutinae, and 
Euphractinae. When analyzing the mtDNA data, 
there appeared to be four to six possible clusters in 
the data. Cluster membership and statistics were 

Fig. 3. Baraminic distance plot based on the armadillo and sloth character matrix from the Gaudin (2004) data set.
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calculated for 4–6 clusters. The analysis began 
with a minimum of four clusters since there were 
three groups (armadillos, anteaters, sloths) and 
opossum as an outlier species. The elbow plot in 
Supplementary fig. 4 shows that the total within 
sum of squares (twss) value stops decreasing sharply 
at six clusters. However, the silhouette plot shown 
in Supplementary fig. 5 shows a maximum average 
silhouette width at five clusters. 

When compared to the morphological data, we 
see that the placement of the sloth genus Bradypus 
is rather ambiguous. It does not show continuity 
with any other genus and shows discontinuity with 
Doellotatus (see fig. 1). Thus, the baraminic placement 
of Bradypus is unsure. It could either be a sloth 
monobaramin, or its own holobaramin. Collagen-
based evidence also placed Bradypus together with 
Nothrotheriops (Presslee et al. 2019). This, however, 
is discordant with the mtDNA results. 

Fig. 5 shows the heatmap of the 37 Xenarthra 
species with five clusters (the four xenarthran groups 
and opossum as the outlier species). Cingulata is 
subdivided into two groups: the genus Dasypus, 
with seven species, and all other cingulates (14 
other species). In contrast with the morphological 
results, Tolypeutes and Cabassous separate from 
Dasypus.

Furthermore, Doedicurus is nested within all 
other non-Dasypus armadillos, indicating continuity 
between extant and extinct cingulates (Delsuc at 
el. 2016). This species is closest to Chlamyphorus 
truncatus (the pink fairy armadillo) with an mtDNA 
sequence similarity of 0.832 and Calyptophractus 
retusus (the greater fairy armadillo) with a similarity 
value of 0.828. It is possible that small-sized fairy 
armadillos represent a monobaramin within which 
species underwent size reduction, enlargement 
of digging claws for a subterranean lifestyle, 
accompanied by reduced eyes (Möller-Krull et al. 
2007). 

Discussion
Vermilingua

It appears that there is only one Vermilingua 
holobaramin, as shown by the mtDNA evidence. This 
means that all anteaters belong to the same created 
kind. However, it appears that there are two Cingulata 
holobaramins: Dasypus and euphractine armadillos. 
This is supported by both the morphological and the 
molecular evidence. As to why there are multiple 
armadillo baramins, we cannot be sure. It may have 
been the case that God created multiple armadillo 
kinds, just as there appear to be multiple bat and 
snake kinds (Cserhati 2020; Cserhati 2021).

Fig. 4. Multi-Dimensional Scaling (MDS) plot of an armadillo and a sloth group. The sloth group consists of 32 species 
(red), whereas the armadillo group is made up of seven species (green).
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Folivora
With Folivora, there might be evidence for the 

holobaraminic status of Bradypus, although this 
is contradicted by the craniodental evidence from 
Gaudin (2004), where Bradypus is placed into the 
same group as Choloepus. Interestingly, Gaudin 
(1995) also notes that the two tree sloths share some 
similarities with one another that set them apart 
from other sloths, most notably their suspensory 
locomotion. 

The craniodental evidence may support the 
existence of two sloth monobaramins, although this is 
inconclusive. Due to the lack of discontinuity between 
the two groups, it cannot be said with confidence that 
they belong to two separate holobaramins. Thus, 
they appear to be two monobaramins within a larger 
sloth holobaramin. In fact, a molecular marker, 
a 27 bp deletion was detected in Bradypodidae 
(where Bradypus belongs) and Megalonychidae 
(where Choloepus belongs), but not in Vermilingua. 

Furthermore, eight retroposons (3× DAS-Ia, 2× DAS-
IIa, DAS-III1b, U2, L1MB2) and 16 indels were 
present only in Dasypus (Möller-Krull et al. 2007), 
evidence for discontinuity between that group and 
other armadillos.

Bradypus and Choloepus are the only two extant 
sloth genera. Dissimilarities may have arisen in the 
mtDNA of Bradypus ever since they diverged from 
extinct sloths, which were highly diverse, including 
around 100 genera in the past. Thus, the two extant 
genera might have been the leftovers of massive 
extinction around the time of the Flood. Bradypus 
happens to have many autapomorphic morphological 
character states. However, these characters are also 
found in genera from Megatheriidae, namely Planops, 
Megatherium, and Eremotherium (Slater et al. 2016). 
Slater et al. also found several sloth endogenized 
foamy-like retroviruses (SloEFV) that are present in 
all sloth lineages, and that Choloepus contains certain 
SloEFVs not found in other sloths, indicating that 

Fig. 5. Heatmap based on sequence similarity between 37 Xenarthra species and the outlier species, Monodelphis 
domestica (opossum). The 37 Xenarthra species form four groups: green: Folivora (sloths), blue: Vermilingua 
(anteaters), yellow: Cingulata (non-Dasypus armadillos), and red: Dasypus (armadillos). Darker, redder colors 
represent species pairs with higher mtDNA sequence similarity (and thus belong to the same kind). Yellow, brighter 
colors represent species from two separate kinds (which correspond to lower mtDNA sequence similarity).
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it may be a monobaramin. Additionally, the dental 
formula of sloths is conservative, corresponding to 
five upper and four lower teeth, characteristic of 
both extant and extinct sloths (Delsuc et al. 2019). 
This evidence suggests continuity between sloths, 
meaning that they may form a single holobaramin.

Cingulata and the placement of Dasypus
There appear to be two cingulate holobaramins, 

the genus Dasypus and all other cingulates. It is 
rather interesting that the 13-foot-long extinct 
Doedicurus should be the closest to these two species 
of four-inch fairy armadillos. This shows the overall 
similarity between large, extinct armadillos and 
extant small-sized ones. However, this assertion is 
based only on mtDNA sequence similarity without 
taking the nuclear genome into account. Apparently, 
size reduction has also happened among the non-
Dasypus armadillos, as has likely happened among 
the cat and dog kinds.

Delsuc at el. (2001) analyzed the mitochondrial 
12S and 16S rRNA and the nuclear 28th exon of the 
vWF genes in eight xenarthran genera. According to 
their results, when examining the vWF alone, the 
grouping of Cabassous and Chaetophractus to the 
exclusion of Dasypus was mixed. However, when all 
three genes were combined, support for the exclusion 
of Dasypus increased. Delsuc et al. (2002) also found 
similar results when analyzing the concatenation 
of three nuclear genes: α2B adrenergic receptor 
(ADRA2B), the breast cancer susceptibility (BRCA1) 
gene, and the vWF for 12 of the 13 living xenarthran 
genera. Presslee et al. (2019) aligned 120 type 1 
collagen protein sequences from 24 genus-level taxa. 
They found that the nine-banded armadillo (Dasypus 
novemcinctus) separated significantly from all other 
armadillo species, together with Doedicurus and 
Glyptodon.

Furthermore, Billet et al. (2011) analyzed 125 
cranial characters from 22 armadillo taxa and found 
that the tolypeutine and euphractine armadillos, 
and glyptodontoids form a clade. However, they 
found dasypodines to be monophyletic but also less 
inclusive compared to the previously mentioned 
clade. This, as well as the molecular evidence from 
Delsuc et al. (2001; 2002), indicate that Dasypus may 
likely be a separate holobaramin.

Interestingly, D. novemcinctatus is the only 
known vertebrate species that exhibits obligate 
monozygotic polyembryony. During this process, 
a single blastocyst undergoes two cell divisions to 
produce genetically identical quadruplets of the 
same gender (Prodöhl et al. 1996). While there exists 
variation in size, scute number and patterns, this 
could well be due to non-genetic factors, such as 
cellular metabolite concentration or the number of 

mitochondria in each descendent cell. It is also well-
known that after a time, even identical twins are 
not identical genetically. Considering this unique 
ontogenetic mode might indicate that Dasypus is a 
different holobarmin compared to other armadillos.

Conclusion and Outlook
As described in the Results and Discussion 

sections, there appear to be four xenarthran kinds: 
anteaters, sloths, and two armadillo groups. But how 
did xenarthrans get to the Americas from the Ark? 
This may be the subject of a subsequent paper, but 
some preliminary thoughts may be discussed here.

Until now, xenarthran fossils have only been 
discovered in South America, the Caribbean, and 
Central America. This distribution can be attributed 
to an event called the Great American Biotic 
Interchange (GABI) (Carrillo et al. 2015; Woodburne 
2010). However, of note is the lack of xenarthran 
fossils in Africa. One would imagine that if animals 
wandered from the Ark all the way to the Americas, 
they would leave fossils at least somewhere along the 
way. This might not be such a big problem for the 
following reasons. 

When the animals left the Ark, they would have 
initially formed smaller groups on their way to South 
America. Due to their sparse numbers, it is possible 
that many different vertebrate groups simply did 
not leave fossils along the way. Also remember that 
fossils usually do not form under normal conditions 
like what we observe today. Rather fossils must form 
quickly under special, catastrophic conditions. 

According to a theory by de Queiroz (2014), some 
animals could have rafted across the ocean from 
Africa to South America shortly after the Flood 
(when the two continents were still close), just as 
animals could have rafted from mainland South 
America to the Galapagos islands. One such species 
is Ucayalipithecus perdita, a non-platyrrhine species 
of monkey from the family Parapithecidae. This same 
family of primates also exists in northern Africa, but 
fossils have also been found from this species in the 
Peruvian Andes (Seiffert et al. 2020). 

This work uses morphological and genetic 
datasets to derive putative xenarthram baramins. 
This highlights the usefulness of additive evidence 
to classify species into separate holobaramins. With 
more genetic datasets and biogeographic data, we 
may get a more complete picture of the baraminology 
of anteaters, armadillos, and sloths.
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