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Abstract
In the first of a series of five papers (Faulkner 2022), I discussed the philosophy of science and described 

some of the different ways that science is done. In this second paper, I trace the history of science from 
the ancient Greeks through the medieval period. With each new development, I categorize the type 
of science being done in terms of the philosophy of science discussed in the previous paper. I identify 
several common misconceptions about ancient and medieval science. In the next two papers, I will 
describe the modern scientific revolution of the seventeenth century and revolution of modern physics 
a century ago. The fifth and final paper will assess the state of modern science in the twenty-first century 
and how creationists ought to view their work.

Keywords: science, Ptolemaic model, geocentrism, heliocentrism, spherical earth 

Introduction
In my previous paper (Faulkner 2022, hereafter 

Paper 1), I briefly discussed the philosophy of science, 
what science is, and how science is done. It is difficult 
to discuss the philosophy of science without including 
some history of science. I avoided discussion of the 
history of science in the earlier paper because it 
would have greatly increased its length and likely 
would have detracted from my main points. I turn 
now in this second paper to briefly describe the 
history of science through the Middle Ages, taking 
care to implement some of the points I discussed in 
Paper 1. For instance, in Paper 1, I contrasted the 
different ways in which science can be done. I will 
evaluate developments in the history of science in 
terms of those different methodologies.

As with so many other products of the West, 
science as we know it dates to the ancient Greeks, so 
I shall pick up the story there. However, people have 
always practiced some form of science, even before the 
ancient Greeks. It is no accident that astronomy was 
one of the first sciences developed. Though relatively 
brief, George Abel’s astronomy textbook gives a good 
history of ancient Greek astronomy (Abel 1964). 
Much more detailed is the history of astronomy by 
Berry (1898), which has long been treated as an 
authority on the subject. Less known is a history of 
astronomy by Dreyer (1906). Much of my discussion 
draws from these sources.

Throughout history, most people were farmers, 
and agriculture is highly dependent upon weather 
and seasonal changes. Therefore, development of 
calendars is essential in knowing when to plant 
crops. Indeed, recognition of the passing of the 
seasons, and days, and years is one of the purposes 
of the heavenly bodies ordained Day 4 of Creation 

week (Genesis 1:14). A fundamental understanding 
of astronomy is necessary in developing calendars. 
There are many megalithic structures around the 
world with astronomical alignments that predate the 
ancient Greeks, the most famous being Stonehenge. 
Since the builders of these structures left no written 
records, what function(s) these structures served is 
only a matter of conjecture. However, building these 
structures obviously required some astronomical 
knowledge and development of calendars.

Early Ancient Greek Astronomy
Given the prehistoric roots of astronomy, it 

is no accident that some of the best science the 
ancient Greeks developed was astronomy. Ancient 
Middle Eastern and Asian cultures were collecting 
astronomical observations long before the Ancient 
Greeks were. So why were the ancient Greeks the 
first to advance astronomy as a science? According 
to Berry (1898, 24), the Greeks were not content to 
merely observe astronomical phenomena but were 
much more interested in enquiring into causes of 
those phenomena. We often fail to appreciate the 
difference worldview can make. While civilizations 
prior to the ancient Greeks had the data at their 
disposal to advance astronomy as a science, they 
lacked the prerequisite worldview that made looking 
at the world scientifically possible.

An example of the importance of worldview in 
interpreting the world is the Maya, the only pre-
Columbian American civilization with a written 
language. The Maya Classical Period was A.D. 250–
900, followed by decline. The Spanish conquered 
most Mayan territory by 1546, though a small Mayan 
civilization in the Petén Basin did not fall until 1697. 
Unfortunately, the Spanish destroyed nearly all 
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Mayan documents they could find, including those 
that detailed Mayan astronomy and cosmology. 
However, beginning in the nineteenth century 
scholars began to study the remaining documents, 
which has revealed much about the Mayan culture. 
While it is well known that the Maya had a very 
sophisticated calendar that required extensive 
astronomical observations, Mayan cosmology is 
only hinted at in their records (Anonymous n.d.). 
It is generally surmised that the Maya thought the 
world was flat. However, the Maya knew about 
the saros cycle. Several civilizations in the Old 
World independently discovered the saros cycle 
from knowledge of the lengths of the synodic and 
draconic months. Such knowledge indicated that 
each civilization that discovered the saros cycle knew 
the two requirements for eclipses: the moon being 
at the proper phase (new for a solar eclipse and full 
for a lunar eclipse) and the moon near a node. From 
this information, it ought to be obvious that a solar 
eclipse occurs when the moon passes in front of the 
earth and a lunar eclipse happens when the earth’s 
shadow falls on the moon. From the observation that 
the shape of the earth’s shadow on the moon during 
lunar eclipses always is a circle easily leads to the 
conclusion the earth is a globe (only a sphere will 
consistently produce a circular shadow under these 
circumstances). Yet, the Maya did not reach this 
conclusion, or if they did, they did not think it worth 
mentioning. Some Old-World civilizations with 
knowledge of the saros cycle apparently did not reach 
this conclusion about the earth’s shape either, but the 
Greeks quickly did after learning of the saros cycle 
from the Babylonian civilization. The difference likely 
was the aforementioned worldview of the Greeks that 
was very different from other civilizations, including 
the Babylonians and Egyptians.

The primary difference was that the Greeks were 
far more analytical than other ancient civilizations. 
For instance, the Babylonians, and to a lesser extent 
the Egyptians, recorded extensive astronomical 
observations, such as positions of the moon, sun, and 
planets. The Babylonians were even able to make 
some predictions of future positions of heavenly bodies 
from their observations. However, the Babylonians 
did not seem as interested as the Greeks were in 
the underlying reasons for the patterns that they 
saw in the sky. Once the Greeks learned astronomy 
from the Babylonians, they began to innovate with 
cosmological models that exceeded anything that 
the Babylonians had done. Both the Egyptians 
and Babylonians developed mathematics, such as 
trigonometry and geometry, long before the Greeks, 
but it was the Greeks who demonstrated a passion 
for mathematics that permitted them to develop 

mathematics more fully. Without this analytical 
approach, the Babylonians and Egyptians may have 
not even noticed the circular shape of the earth’s 
shadow during lunar eclipses, and even if they did, 
they likely did not enquire as to what that implied. 
However, to the Greek mind, the earth’s shadow 
during a lunar eclipse was obvious, along with the 
implication that the earth is a globe. Since many 
ideas of the West trace back to the ancient Greeks, 
we identify with the worldview of the ancient Greeks, 
making it difficult for people in the West today to 
understand why other civilizations failed to make 
this connection about the earth’s shape.

Unlike earlier cultures in the West, the Greeks 
left written records. However, there are no surviving 
copies of works by many early Greek authors. We know 
of these earlier works either from mere fragments or 
from later sources that attributed accomplishments 
to them. With a few exceptions, these later accounts 
are generally considered reliable. A notable exception 
is Herodotus’ (c. 484–425 B.C.) report that Thales 
(c. 624/623–548/545 B.C.) accurately predicted a total 
solar eclipse in the early sixth century B.C. Greek 
cosmology in Thales’ time had not advanced to the 
point to be able to predict eclipses even crudely with 
the saros cycle,1 let alone the precision implied by 
Herodotus. Therefore, modern historians of science 
discount Herodotus’ account of Thales’ eclipse 
prediction.

Speaking of Thales, he is considered the first 
traditional Greek philosopher, and he founded the 
Ionian school of philosophy. Thales is also credited 
with being the first to develop what we would 
recognize as a scientific way of looking at the world, 
so he is often called the father of science. Prior to 
Thales, the Greeks generally used mythology to 
explain the world. Rather than the world being 
random and haphazard, which is what mythological 
explanations generally result in, Thales saw unity 
and regularity in natural phenomena. One should 
not conclude that the ancient Greeks immediately 
abandoned their mythology through the influence 
of Thales. Rather, mythology and what we would 
recognize as a scientific approach to explain the world 
continued side by side for centuries. However, trust 
in the explanatory power of mythology gradually 
waned. This is a good examples of Kuhn’s paradigm 
shift discussed in Paper 1 (Faulkner 2022).

Thales made contributions to geometry and 
astronomy. Thales knew of the ecliptic, the apparent 
path of the sun through the stars each year. 
Consequently, Thales measured the length of the year 
and determined when the equinoxes and solstices 
occurred. In Thales’ cosmology, the earth was a flat 
disk. The stars (including the planets), sun, and moon 

1 It is believed that the ancient Greeks learned about the saros cycle several centuries after Thales.
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orbited the earth each day, allowing astronomical 
objects to pass under the earth as they set and rose. 
About cosmogony, Thales taught that water was 
the primordial matter of earth’s creation. This is 
consistent with biblical cosmogony (Genesis 1:2; 
Psalm 24:1–2; Psalm 136:6; 2 Peter 3:5). Could Thales 
have been influenced by a vestige of the true Creation 
account that was otherwise lost to his people?

What type of science did Thales engage in? He 
used observations to learn about the ecliptic. He used 
metrology to measure the year’s length and when the 
times of equinoxes and solstices were. Thales used 
abductive reasoning to develop his cosmology. There 
is no evidence that Thales tested his cosmology, 
so he did not use inductive reasoning in studying 
his cosmology. Therefore, Thales’ cosmology had 
explanatory power but no predictive power.

Anaximander (c. 610–546 B.C.) succeeded his 
master, Thales. Anaximander’s cosmology had the 
height of the earth’s flat disk one-third its diameter. 
The known world of Europe, Asia, and Africa 
surrounding the Mediterranean Sea was bordered by 
a vast ocean that extended to the edge of the disk. 
Anaximander may have been the first to conceive of 
the celestial sphere, a large distant shell surrounding 
the earth. Beyond his celestial sphere was fire. Holes 
in the celestial sphere admitted light of the fire 
toward the earth. The light seen through these holes 
were the sun, moon, stars, and planets. The daily 
rotation of the celestial sphere caused astronomical 
bodies to rise and set. Soon after Anaximander, his 
model was modified so that astronomical bodies were 
attached to the celestial sphere. The celestial sphere 
remained in Western cosmology for two millennia. 
Anaximander speculated on the relative distances 
of the astronomical bodies. Most of Anaximander’s 
approach could be described as abductive reasoning. 
He refined and built upon what Thales had built, but 
as before, there were no tests of his model.

Pythagoras (c. 570–495 B.C.) was also from the 
Ionian school, though he eventually left Ionia and 
established his own school in modern day Crotone 
in southern Italy. Famous for his developments 
in mathematics and music, Pythagoras also is 
credited with being the first to argue that the earth 
is spherical. Unfortunately, we do not have a record 
of Pythagoras’ reasons for believing the earth is 
spherical. Pythagoras also believed that the sun 
and moon are spherical, so some have speculated 
that Pythagoras concluded that the earth is a globe 
by analogy. Pythagoras appears to have similarly 
reasoned that other astronomical bodies, the stars 
and planets, are spherical by analogy to the sun and 
moon. However, it may be that Pythagoras simply 

reasoned on aesthetic grounds that since the circle is 
the perfect two-dimensional object and the sphere is 
the perfect three-dimensional object, then the earth 
must be spherical. Since we do not know the reason 
Pythagoras opined the earth is a globe, it is not 
possible to assess what type of science, if any, that 
he employed to reach this conclusion. Pythagoras 
was well respected in his time and thereafter, so 
his influence on Western thought is immense. The 
fact that the earth is a globe appears to have been 
rapidly embraced by ancient Greek thought after 
Pythagoras. 

Among the Pythagoreans, Philolaus (c. 470–
385 B.C.) is credited as the first to suggest the earth 
is in motion. Philolaus had the earth orbit a central 
fire, with a counter-earth orbiting the central fire 
exactly 180° opposite the earth, so the counter-earth 
could not be seen from earth. The earth orbited the 
central fire once a day, with the Greek world on the 
opposite side of the spherical earth from the central 
fire, preventing anyone he knew from seeing the 
central fire. The other astronomical bodies orbited 
the central fire as well. Why did Philolaus concoct 
this system? It may be that, true to the Pythagorean 
mystical belief in numbers, Philolaus thought ten was 
the perfect number for such a cosmology. There were 
seven moving objects (sun, moon, and five naked-
eye planets), plus the earth, requiring two more 
objects, the central fire and the counter earth. Few 
people would recognize any science in this, but some 
have suggested this was the first step on the road to 
heliocentrism. Keep in mind that this is geokinetism 
(as opposed to geocentrism), not heliocentrism.2 
Two other Pythagoreans, Hicetas (c. 400–335 B.C.) 
and Ecphantus (fourth century), thought the daily 
rotation of the sun, moon, and stars were due to the 
earth rotating on its axis, though they likely believed 
the earth was the center of the universe and hence 
did not orbit anything else.

The Pythagorean school developed the idea that 
there were eight concentric spheres, one for the 
stars, and one each for the seven moving objects, 
the sun, moon, and five naked-eye planets. As these 
spheres rotated independently, friction between 
them produced the music of the spheres that only 
the most gifted could hear. This notion persisted 
for two millennia. It is not clear if Pythagoras 
originated this or if it was developed by his followers. 
Though not of the Pythagorean school, Eudoxus of 
Cnidus (c. 408–355 B.C.) appears to have built upon 
it. Eudoxus proposed a system of nested, moving 
spheres to explain the motion of the sun, moon, and 
planets. This system required a total of 27 spheres to 
work. A few decades later, Callippus (c. 370–300 B.C.) 

2 Geocentrism refers to the belief that the earth does not move. Geokinetism is the belief the earth moves. Heliocentrism is the 
belief that the earth orbits the sun. Hence heliocentrism is a form of the more general geokinetism.
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improved Eudoxus’ system by adding an additional 
seven spheres. Since these schemes attempted to 
explain the observed motions of heavenly bodies, they 
are examples of abductive reasoning. Since we don’t 
have complete information about these two models, it 
is not clear how predictive these models were. These 
works were precursors of Ptolemy’s model nearly five 
centuries later.

Aristotle
Aristotle (384–322 B.C.) epitomized ancient Greek 

science. Aristotle discussed many topics in nature, 
but since I am concentrating on astronomy, for now 
I shall focus on Aristotle’s teachings on astronomy. 
Aristotle correctly inferred that the cause of lunar 
phases is the changing amount of the moon’s lit half 
we see throughout the moon’s monthly orbit of the 
earth. This required understanding that the moon is 
a globe that is not self-luminous but reflects the sun’s 
light. Aristotle also understood the cause of eclipses. 
It is likely that the causes of eclipses and lunar 
phases were already known to the ancient Greeks, 
but Aristotle is the earliest source we have that 
discusses the causes of eclipses and lunar phases.

In his On the Heavens, written about 350 B.C., 
Aristotle taught that the earth is a globe. Again, 
Aristotle did not introduce the idea of a spherical 
earth. Rather, Aristotle built on that knowledge, 
and gave four reasons for that belief. Two of these 
arguments are very good, so I use them today. One 
argument is to note that during lunar eclipses, the 
earth’s shadow is always circular. A flat, circular 
earth could cast a circular shadow, but only when a 
lunar eclipse happened at midnight in early winter. 
Given the circumstances of a lunar eclipse, the only 
shape that consistently casts a circular shadow 
regardless of its orientation is a sphere. The other 
argument involves the appearance of stars as one 
travels north or south on the earth. From southern 
locations, stars due south in the sky appear higher 
than they do at northern locations. Indeed, some 
stars that are perpetually below the southern 
horizon at more northern locations are above the 
southern horizon farther south. Meanwhile, stars 
in the northern part of the sky appear lower in the 
sky at southern locations than at northern locations. 
Likewise, stars that are above the northern horizon 
at northern locations may be below the northern 
horizon at southern locations. This is best explained 
by the earth being curved in the north-south direction. 
This is not direct evidence that the earth is a globe. 
For instance, the earth could be curved north-south 
but not curved east-west, resulting in a shape like a 
speedbump. However, there is no record of an ancient 
speedbump-shaped cosmology. A spherical earth is 
the simplest explanation for this observation.

A third argument that Aristotle had for the earth’s 
curvature is from analogy with the moon. The moon 
appears round in the sky, but what we see is two-
dimensional. At the very least, the moon must be 
circular, but what is the moon’s shape in our line of 
sight? The moon’s terminator, the division between 
light and dark on the moon, is generally curved (the 
terminator is straight only at the quarter phases, 
when the moon appears half lit). Understanding 
the cause of lunar phases, the curved terminator 
indicates that the moon is curved in our line of sight, 
making the moon a sphere. The sun also appears 
circular, but is it two-dimensional round (a circle) or 
three-dimensional round (a sphere)? Aristotle lacked 
information to conclude the sun’s shape in our line of 
sight, but he thought the sun was a globe as the moon 
is. As mentioned before, this conclusion is consistent 
with the ancient Greeks’ concept of perfection in the 
heavens and the belief that a sphere is the perfect 
shape. By analogy, Aristotle reasoned that the earth 
must be a globe too. This is a weak argument because 
it requires assuming that the earth is somehow 
similar to the moon and sun. While this turns out 
to be a correct assumption and may seem obvious 
to people today, it was an assumption on Aristotle’s 
part.

What sort of reasoning did Aristotle use? Much 
of his reasoning was abductive. This is the case 
with the conclusion he reached about eclipses and 
lunar phases, as well as his first two reasons for 
the earth’s spherical shape. In each of these cases, 
Aristotle reached the most probable explanation for 
what he observed. His third argument for the earth’s 
spherical shape is more of a deductive approach. It 
took this form:
1.	The earth is like the moon;
2.	The moon is spherical;
3.	Therefore, the earth is spherical.

If the two premises are true, then the conclusion 
is true. Aristotle arrived at the minor premise using 
abductive reasoning, but he assumed the major 
premise as being reasonable. We may question the 
first premise. It is virtually undeniable that the earth 
and moon have some similarities, but it is abundantly 
clear that they have differences as well. Therefore, 
how can one be sure that the characteristic raised in 
the minor premise (being spherical) is a trait that the 
earth and moon share?

As discussed in Paper 1 (Faulkner 2022), some 
people are fixated upon experimentation being the 
only methodology of science. If that is one’s standard 
for science, then Aristotle did not engage in scientific 
reasoning. But since very little of astronomy is based 
upon experiments, then this attitude results in the 
conclusion that astronomy is not a science, along 
with other disciplines that are generally recognized 
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as sciences. The fact that most people, including 
scientists, consider astronomy and these other fields 
to be sciences exposes the error of a philosophy that 
demands an exclusively experimental approach 
to science. As argued in Paper 1 (Faulkner 2022), 
operational science, properly understood, is the 
drawing of inferences about how the natural world 
operates based upon empirical data. With this 
broader, proper understanding of science, Aristotle 
clearly engaged in scientific reasoning to reach his 
conclusions.

Aristotle’s influence on the opinions of those in 
the West about the shape of the earth was immense. 
While there were a few mentions of the earth being 
a globe prior to Aristotle, his writing on the earth’s 
shape in On the Heavens (c. 350 B.C.) is the earliest 
clear primary source on the subject. After Aristotle, 
there was widespread agreement of scientists in 
Western antiquity that the earth is spherical. Given 
the general lack of primary sources in the West 
earlier than the time of Aristotle, the understanding 
that the earth is a globe was probably widespread 
among ancient Greeks prior to Aristotle’s On the 
Heavens.

Measurements of the Earth’s Size
Furthermore, Aristotle commented on the earth’s 

size, for he wrote that
those among the mathematicians who attempt to 
calculate the extent of the circumference maintain 
that it is about 400,000 stadia, from which it follows 
that the bulk of the earth must not only be spherical, 
but not large in comparison with the size of the other 
stars. (Dreyer 1906, 118)
There was more than one stadium in use. The 

stadium by which Aristotle most likely expressed the 
earth’s circumference results in an earth diameter of 
about 12,500 miles, 58% larger than the correct value. 
It is not known who these mathematicians were or 
what method they used to measure the earth’s size. 
It is likely that they used a method similar to that of 
Eratosthenes, who measured the earth’s size around 
200 B.C.

Eratosthenes (c. 276–195/194 B.C.) lived in 
Alexandria, working at the famous Great Library 
there. Eratosthenes was aware that at local noon 
on the June solstice, the bottom of a deep well in 
the city of Syene in southern Egypt (near modern-
day Aswan) was briefly bathed in sunlight and thus 
could be seen. Whether Eratosthenes knew this from 
personal experience or from the testimony of others 
is not clear. Normally, the bottom of a deep well is 
not visible because it is perpetually in shade. Being 
situated on the Tropic of Cancer, it is possible to 
see the bottom of a deep well in Syene, but only at 
noon on the June solstice. Eratosthenes knew such 

a thing wasn’t possible in Alexandria because, being 
outside the tropics, the sun is never directly overhead 
there. Eratosthenes lived a century and a half after 
Aristotle, by which time it was widely known in the 
Greek world that the earth is a globe and that the 
sun is at a great distance from the earth compared 
to the earth’s size. Therefore, the difference in the 
sun’s altitude between Alexandria and Syene was 
a consequence of the earth being spherical rather 
than a parallax effect due to observing the sun at two 
different locations. Furthermore, it was possible to 
make use of this observation to measure the earth’s 
size.

In Alexandria, Eratosthenes constructed a 
gnomon (a vertical column to cast the sun’s shadow 
on a horizontal surface). At noon on the June 
solstice, Eratosthenes measured the length of the 
gnomon’s shadow. From the known height of the 
gnomon, it was a straightforward application of 
basic trigonometry to find the zenith distance of the 
sun, the angle the sun made with the vertical. Fig. 1 
illustrates the method. Eratosthenes found that the 
sun’s zenith distance was 1/50 of a circle, about 7.2°. 
From geometry, one can readily see that this angle 
is the same as the difference in latitude between 
Alexandria and Syene. Eratosthenes reasoned that 
the linear north-south distance between the two cities 
is also 1/50 of the earth’s circumference, so dividing 
the known distance between the two cities (as the 
father of geography, Eratosthenes had commissioned 
much surveying and mapmaking of Egypt) by this 
fraction yielded the earth’s circumference. Division 
by 2π produced the earth’s radius. Like Aristotle, 
Eratosthenes expressed his result in stadia. If 
Eratosthenes used the more commonly used stadium, 
his answer was 20% too great. However, if he used 
the less commonly used stadium, his answer was off 
by only an astonishing ½%.
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Fig. 1. Eratosthenes’ method of measuring the 
earth’s size. The angles VAS and ACB are the same. 
Eratosthenes measured the former angle to be 1/50 
of a circle, and the arclength BA is 1/50 of the earth’s 
circumference. Therefore, multiplying the measured 
distance between points B and A on the earth by 50 
yields the earth’s circumference.
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A century later, Posidonius (c. 135–51 B.C.) used 
a different method to measure the earth’s size. 
Posidonius observed that where he lived on the 
island of Rhodes, the bright star Canopus was visible 
just on the southern horizon, never rising above 
the horizon. On the other hand, when Posidonius 
traveled to Alexandria a few hundred miles to the 
south, Canopus was a few degrees above the southern 
horizon. Realizing this too was a consequence of the 
earth being a globe, Posidonius divided what he 
thought was the distance between the two locations 
by the altitude of Canopus (the angle it made with 
the horizontal, expressed as a fraction of a circle) to 
obtain the earth’s circumference. As with Aristotle 
and Eratosthenes before him, there is uncertainty 
about which stadium Posidonius used, so there 
is some doubt as to the exact radius for the earth 
Posidonius found.

Unlike Aristotle, no intact works of either 
Eratosthenes or Posidonius survive. We know 
of their work through later, secondary sources. 
For instance, the earliest extant mention of 
Eratosthenes’ result is from several centuries after 
Eratosthenes lived. This has added confusion about 
the exact size of the earth that either man obtained. 
While Eratosthenes’ measurement is better known 
today, that has not always been the case. In 
the first century, Pliny the Elder (A.D. 23/24–79) 
mentioned Posidonius as one of his sources and 
described his method of measuring the earth’s 
size. In the second century, Ptolemy included a 
lower value of Posidonius’ result in his Almagest 
(1984). It was this one-third too small size of the 
earth that Christopher Columbus used to argue 
that India was not that far west of Europe. While 
Eratosthenes’ measurement has been known since 
antiquity, it is only in the past couple of centuries 
that Eratosthenes’ measurement received more 
attention than Posidonius’ measurement.

What kind of science did Eratosthenes and 
Posidonius employ? It certainly wasn’t experimental 
science. Nor did they use inductive or abductive 
reasoning. Rather, building upon what was already 
known, these two men engaged in metrology, 
measuring the properties of natural things—in this 
case, the earth’s size. As pointed out in Paper 1 
(Faulkner 2022), this is a legitimate type of scientific 
research.

Measuring the Sizes of the Sun and Moon, 
Development of Spherical Astronomy

Between Aristotle and Eratosthenes was 
Aristarchus of Samos (c. 310–330 B.C.). Aristarchus 
attempted to measure the distances and sizes of the 
sun and moon in terms of the earth’s size. Aristarchus 
made three assumptions:

1.	The moon’s orbit is circular;
2.	The moon moves on its orbit at a uniform rate;
3.	The sun is farther from the earth than the moon 

is, but the sun is sufficiently close so that its rays 
reach the first quarter moon and the third quarter 
moon from slightly different directions.
The first two assumptions are not strictly true 

but are approximately true. The third assumption 
is technically true but practically speaking is not 
true. What I mean by that is that the sun is far 
enough away (400 times the moon’s distance) that 
the difference in the direction of sunlight on either 
side of the moon’s orbit is too small for Aristarchus to 
have made meaningful measurements. Even today 
such a measurement would be difficult, if possible at 
all. With these assumptions, Aristarchus reasoned 
that the distance along the moon’s orbit from first to 
third quarter is greater than the distance between 
third and first quarter (see fig. 2). With assumptions 
1 and 2, these different distances would be in direct 
proportion to the different times it takes the moon 
to pass from the first quarter to the third quarter 
and from the third quarter to the first quarter. 
Aristarchus precisely observed when he thought the 
respective quarter phases occurred, and from the 
pair of time intervals was able to construct the two 
triangles as shown in fig. 2. Aristarchus concluded 
that the sun was 18–20 times farther away than the 
moon is. This is off by a factor of 20, but it was the 
first attempt to measure the relative distances of the 
sun and moon.

Aristarchus also was able to measure the sizes of 
the sun and moon relative to the earth. He started 
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T
Fig. 2. Aristarchus’ method for finding the relative 
distances of the moon and sun. The blue circle at point 
E represents the earth, and the yellow circle at point S 
represents the sun. First quarter moon is at point F, and 
third quarter moon is at point T. Since the rays from the 
sun are tangent to the moon’s orbit at the quarter phases, 
the angles at points F and T are 90°. Aristarchus found 
that it took less time for the moon to travel CCW from 
point T to point F than it took to travel CCW from point 
F to point T. Assuming the moon moved at a constant 
rate in its orbit, Aristarchus knew the two arclengths. 
From geometric construction, Aristarchus was able to 
determine the relative distances of the moon and sun.
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with the observation that the sun and moon have 
the same angular diameter.3 Since Aristarchus 
determined the sun is 20 times farther from the earth 
than the moon is, then the sun must be about 20 times 
larger than the moon. Aristarchus also observed that 
during a lunar eclipse, the earth’s umbra (shadow) at 
the moon’s distance from earth appears around 8/3 the 
moon’s diameter. From this information, Aristarchus 
used geometric construction to determine that the 
moon is approximately 1/3 the earth’s size, and the 
sun is about seven times the earth’s size. Combining 
with the other information, Aristarchus concluded 
that the moon’s distance is about 10 times the earth’s 
diameter, and the sun’s distance is 200 times the 
earth’s diameter. Aristarchus’ size for the moon is 
slightly larger than the moon’s true diameter, but his 
distances for the sun and moon are far too low. 

Aristarchus taught that the earth orbited the sun 
each year. This is the earliest clear record of anyone 
proposing such a thing, so Aristarchus is considered 
the father of the heliocentric theory. We do not know 
Aristarchus’ reasons for his heliocentrism. It is likely 
that given the large size of the sun, it made more 
sense for the sun to be the center of the solar system 
rather than the much smaller earth. I shall return 
below to discussion of the geocentric and heliocentric 
models in antiquity.

What sort of reasoning did Aristarchus employ? 
He did not conduct any experiment in which he 
manipulated an independent variable. Rather, 
Aristarchus performed observations of the 
appearance and movement of the moon and sun to 
measure their relative sizes and distances. Therefore, 
much of his work was metrology rather than any 
formal inductive or abductive reasoning. Aristarchus’ 
conclusion about heliocentrism could perhaps be best 
described as being deductive.

Known as the father of geometry, Euclid flourished 
around 300 B.C. While Euclid did not invent geometry, 
Euclid’s great contribution was his Euclid’s Elements 
(1926), in which he collected and laid out what 
was already known about geometry in a logical, 
concise manner. However, Euclid completed other 
works, such as Phaenomena, a treatise on spherical 
geometry. Again, Euclid did not invent spherical 
geometry,4 but credit goes to him for organizing 
spherical geometry into the subdiscipline of math 
that it is. Being on a spherical surface, spherical 
geometry is non-Euclidian geometry. Spherical 
geometry, and especially spherical trigonometry, 
is very useful in expressing separations of celestial 

objects in the sky and solving problems involving 
celestial objects, such as determining the times of 
sunrise and sunset. While Euclid did not make any 
contributions to astronomy per se, his development 
of spherical geometry provided a very valuable 
mathematical tool for ancient Greek astronomers.

Hipparchus
The most important astronomer among the 

ancient Greeks was the second century astronomer 
Hipparchus (c. 190–c. 120 B.C.). Often called the father 
of astronomy, Hipparchus made many important 
contributions to astronomy. Unfortunately, 
Hipparchus’ only work to survive is his Commentary 
on the Phaenomena of Eudoxus and Aratus (Faulkner 
2013a). This is a pity because this probably is the 
least significant of Hipparchus’ works. Consequently, 
most of what we know about Hipparchus’ work comes 
from many secondary sources, such as Strabo and 
Pliny the Elder in the first century and Ptolemy in 
the second century A.D. 

Hipparchus carried out many observations from 
his observatory on the island of Rhodes. This required 
construction of instruments he used to accurately 
measure the positions of the stars, planets, the moon, 
and the sun. But more importantly, Hipparchus 
compared his observations to those of Timocharis 
and Aristyllus, who worked in Alexandria in the 
third century B.C. This allowed Hipparchus to make 
some of his most significant discoveries. Hipparchus 
compiled a star catalog with about a thousand 
entries. For each star, he recorded its position 
in the sky along with an estimate of how bright it 
is. To express the latter, Hipparchus developed 
the system of apparent magnitude, a system that 
astronomers still use after more than two millennia. 
Alas, Hipparchus’ star catalog was lost, but shortly 
before this paper went to press, discovery of a portion 
of Hipparchus’ famous star catalog came to light 
(Gysembergh, Williams, and Zingg 2022). It reveals 
that Hipparchus’ star catalog had more precise star 
positions than Ptolemy’s later catalog.

For a long time, it was assumed that, like 
Ptolemy two centuries later, Hipparchus used 
ecliptic coordinates to record the positions of the 
stars in his catalog. However, the newly discovered 
manuscript mentioned above shows that Hipparchus 
used equatorial coordinates.5 Ecliptic latitude is 
measured with respect to the plane of the ecliptic, 
with the range of –90° and +90°. Ecliptic longitude 
is measured eastward from the vernal equinox, with 

3 Angular diameter, or apparent size, is the angle that lines from opposite sides of an object intersecting with the observer subtend. 
4 Credit for inventing spherical geometry goes to Autolycus of Pitane (c. 360–c. 290 B.C.). His late fourth century B.C. On the Moving 
Sphere is considered the earliest preserved mathematical work from the ancient Greeks. It predates Euclid’s work by a few decades.
5 Equatorial coordinates measures declination north and south of the celestial equator and right ascension eastward along 
meridians running from the north celestial pole to the south celestial pole. This coordinate system is analogous to latitude and 
longitude on earth.
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the range of 0° to 360°. Whatever coordinates one 
may use, it is relatively easy to transform from one 
system to the other. When Hipparchus compared his 
measurements to those measured by Timocharis a 
century and a half earlier, he found a shift of 2° in 
ecliptic longitude. However, there was no change 
in the ecliptic latitudes of those stars. Hipparchus 
concluded that the equinoxes (the intersections of the 
equator and ecliptic) gradually slide along the ecliptic. 
We call this effect the precession of the equinoxes 
(Faulkner 2013b). The ecliptic had not moved, but 
rather the celestial equator had moved through the 
stars. Consequently, the celestial poles, which are 
perpendicular to the celestial equator, move through 
the stars too. The celestial poles are the two points 
around which the stars appear to spin each sidereal 
day. Currently, Polaris is within ¾° of the north 
celestial pole, so Polaris hardly appears to move at 
all, making it the pole star. However, in antiquity, 
Polaris was not a pole star (the name Polaris goes 
back only a few centuries). 

Hipparchus reattempted Aristarchus’ method of 
finding the moon’s distance. He determined that the 
moon is 29½ earth diameters from the earth. This 
is amazingly close to the correct value of 30. This 
value would remain the accepted distance to the 
moon until Tycho Brahe slightly improved upon it 
more than 17 centuries later. Hipparchus continued 
to refine measurements. For instance, Hipparchus 
determined the length of the year to within six 
minutes of the correct value. But Hipparchus also 
performed error analysis to conclude that his answer 
could not be off by more than 15 minutes. From his 
careful observations of the positions of the sun and 
moon, Hipparchus developed a method of predicting 
the sun’s position with at least the precision of 
measurements then possible. Hipparchus was 
able to calculate the position of the moon nearly as 
accurately. From this information, Hipparchus was 
able to predict lunar eclipses to within an hour or 
so. Hipparchus also made a major advancement in 
predicting roughly where on earth a solar eclipse 
might be visible. This had eluded earlier astronomers.

Hipparchus also made major advancements in 
design and construction of instruments to measure 
positions of astronomical objects as well as angles 
in the sky. To interpret his data, Hipparchus either 
invented or made innovations in plane and spherical 
trigonometry. Like most other Greek scientists of the 
time, Hipparchus was a geocentrist, and he thought it 
most likely that the sun moved on a circle at a uniform 
rate. However, Hipparchus was aware that the sun 
did not appear to move at a uniform rate throughout 
the year. He solved this problem by proposing the 
sun moved at a uniform rate on a circle that was 
not centered on the earth. An off-center circle such 

as this is called an eccentric. An eccentric is a good 
approximation to the elliptical shape of planetary 
orbits. If the sun moved uniformly on an eccentric, 
it would appear to move most quickly when nearest 
the earth and most slowly when most distant from 
the sun, much as what one observes with elliptical 
orbits. From the observed nonuniform apparent 
motion of the sun, Hipparchus was able to figure 
out when perihelion, the smallest distance between 
the earth and sun, was. Hipparchus realized that he 
could match the sun’s motion with an epicycle, but 
he thought the use of the eccentric was better. More 
than two centuries later, Ptolemy made use of these 
innovations in his model.

Fitting the moon’s motion around the earth proved 
to be more difficult. Hipparchus was able to fit the 
moon’s orbit with an eccentric, but unlike the sun, 
Hipparchus found that the moon’s eccentric in turn 
orbited the earth over nine years. Furthermore, 
Hipparchus measured the 5° tilt of the moon’s orbit 
to the ecliptic, and he found that the nodes (the two 
intersections of the moon’s orbit with the ecliptic) 
precess with a 19-year period. Thus, Hipparchus was 
the first to discover the moon’s apsidal and nodal 
precession.

What kind of science did Hipparchus employ? With 
his star catalog, and measurements of the positions 
of the sun and moon, from which he learned much 
about the moon’s orbit and the length of the year 
and the seasons, much of Hipparchus’ work was in 
metrology. These measurements proved invaluable 
for later astronomers. But Hipparchus also developed 
some models of the motions of the sun and moon. 
Later astronomers built upon these models.

Ptolemy
Working in the early second century A.D., 

Claudius Ptolemy (c. A.D. 100–c. 170) was the final 
word in ancient Greek astronomy. His greatest 
contribution is a 13-volume work that he called the 
Syntaxis but is usually known today as the Almagest. 
The name change came from the history of this 
work. Originally written in Greek, Ptolemy’s book 
virtually disappeared in western Europe in the early 
Middle Ages. Meanwhile, it remained in use in the 
remains of the eastern Roman Empire. In the wake 
of the Muslim Conquest in the seventh and eighth 
centuries, Arab astronomers encountered works of the 
ancient Greeks, including Ptolemy. They were much 
impressed with Ptolemy’s work, so they translated 
it into Arabic, calling it Al Magisti, meaning “the 
greatest” in Arabic (we get our word “majestic” from 
the same root). Read and used widely in the Arab 
world, the Almagest made its way back into the West 
a few centuries later, where it was translated from 
Arabic into several European languages. Along the 
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way, the Arabic title was transliterated into Latin 
and finally into English as Almagest. Consequently, 
many late medieval manuscripts of the Almagest 
survive. Textual criticism reveals that we have 
something very close to the original autograph.

What about the Almagest so impressed medieval 
Arab astronomers? Ptolemy devised a clever 
geometric method of predicting the motion of the 
five naked-eye planets. While planetary orbits are 
relatively simple, the motions of the planets that 
we observe are not. The problem is that we observe 
the other planets from the earth, which is also 
orbiting the sun. Therefore, the observed motion of 
the planets is a combination of our motion and their 
motion around the sun. Most of the time, the planets 
appear to move eastward near the ecliptic. We call 
this direct, or prograde, motion. However, from time 
to time, the planets reverse direction and move 
westward along the ecliptic, in what we call indirect, 
or retrograde motion.

What causes retrograde motion? In the heliocentric 
model it is easy enough to understand. Superior 
planets are planets with orbits larger than the earth’s 
orbit. Among the five naked-eye planets, the superior 
planets are Mars, Jupiter, and Saturn. Since their 
orbits are larger than earth’s orbit, superior planets 
must travel a greater distance than earth does to 
complete one circuit around the sun. Furthermore, 
since superior planets are farther from the sun, they 
also move more slowly in their orbits. Consequently, 
the earth overtakes and passes superior planets when 
they are near opposition, the point where superior 
planets appear opposite the sun in our sky. When you 
overtake or pass a vehicle on a highway, the other 
vehicle appears to move backward even though it is 
moving forward the entire time. Similarly, superior 
planets undergo retrograde motion as we overtake 
them when they are near opposition (see fig. 3). A 
similar thing happens with inferior planets, planets 
with orbits smaller than earth’s orbit (Mercury and 
Venus), except this time it is the inferior planet, 
moving in a faster, smaller orbit, that overtakes 
the earth, producing retrograde motion of inferior 
planets.

As I said, it is easy enough to comprehend what 
is going on within the heliocentric model, but how 
can one explain this in a geocentric model? One 
could hypothesize that planets just change speed 
and direction in their motions around the earth. 
However, that would violate the concept of perfection 
in the heavens, with heavenly bodies required to 
move on circles at uniform rates. Furthermore, such 
a conjecture has no predictive power. Hipparchus 
and others had already offered suggestions of how 
to explain retrograde motion within a geocentric 
model while preserving some semblance of heavenly 

perfection. We don’t know if Ptolemy was the 
originator of what has become called the Ptolemaic 
model. If Ptolemy did not propose the model outright, 
he does deserve credit for codifying it and writing 
it in complete detail that survives today in many 
manuscripts. For now, I will assume that most, if not 
all, of the Ptolemaic model was conceived by Ptolemy, 
building on the works of his predecessors, of course.

The first problem that Ptolemy had to solve was 
retrograde motion. He did this by invoking motion 
on two circles, one larger and one smaller for each 
planet (see fig. 4). A planet moved at a uniform 
rate along the smaller circle, called an epicycle. The 
center of the epicycle in turn moved at a uniform 
rate on the larger circle, called the deferent. The 
original intent was to have all seven deferents (one 
for each of the five naked eye planets and one each 
for the sun and moon) centered on the earth. By 
adjusting the sizes of the epicycles and deferents and 
the speeds of the planets on their epicycles and the 
speeds of their epicycles on their deferents, Ptolemy 
had much success in fitting the observed motions of 
the planets.

However, an exact fit required additional 
adjustments. For instance, the five naked-eye 
planets and the moon bob up and down slightly with 
respect to the ecliptic. Today we would say this is due 
to their orbits being inclined to the ecliptic. Ptolemy 
described this motion with an additional smaller 
epicycle for the moon and each planet. These smaller 
epicycles were in a plane perpendicular to the plane 
of the original epicycles.

But further refinements were necessary because 
strictly uniform motion centered on the earth was not 
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Fig. 3. How retrograde motion occurs in the heliocentric 
model. The yellow circle represents the sun. The smaller 
black circle represents the earth’s orbit, and the larger 
black circle represents the orbit of a superior planet. 
Beginning at points B and B′, the two planets move 
CCW toward points F and F′. Since the earth is moving 
more quickly on a smaller orbit, it overtakes the other 
planet. The series of straight lines extended to the right 
illustrate the apparent motion from earth that the other 
planet undergoes against a backdrop of stars.
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sufficient to fully explain planetary motion. Ptolemy 
found that a better fit resulted when he slightly 
displaced the deferent of each planet from being 
centered on the earth. This is similar to Hipparchus’ 
small correction. Ptolemy also found that the uniform 
motion of the epicycles around either the centers of 
each deferent or the earth was not a good match to 
what was observed. Rather, the best match was found 
when each planet’s epicycle orbited at a uniform rate 
with respect to its equant. The equant of a deferent 
is the point colinear with earth and the center of the 
deferent, but on the side of the center opposite the 
earth. With these adjustments, the Ptolemaic model 
worked very well to describe planetary motion.

Why were these latter two refinements necessary? 
As we shall see in the next paper, the first adjustment 
of moving the earth off center was necessitated by 
the fact that planetary orbits are ellipses, with the 
center of motion being one focus of the ellipses. This 
is Kepler’s first law of planetary motion. Since the 
planets’ orbits are low-eccentricity ellipses, a good fit 
can be obtained by approximating the true situation 
with off-centered circles. The second adjustment is 
because planets do not orbit at uniform rates, but 
instead move most quickly when at perihelion (the 
closest approach to the sun) and most slowly when 
at aphelion (when most distant from the sun). 
Kepler’s second law of planetary motion expresses 
this fact in a very precise way. Therefore, Ptolemy 
was approximating Kepler’s description of planetary 
motion 15 centuries before Kepler.

Notice that these refinements were a retreat from 
the starting assumptions of the Ptolemaic model: 
uniform motion on circles centered on the earth (and 
hence the Ptolemaic model was not strictly geocentric). 
That didn’t seem to matter to many people. All that 
mattered was that the Ptolemaic model did a good 
job of explaining planetary motion, and it could be 
used to predict planetary positions far into the future 
with confidence, as well as into the past. That is, the 
Ptolemaic model had both explanatory power and 
predictive power, the hallmarks of a good theory, as 
pointed out in Paper 1 (Faulkner 2022). This power 
of the Ptolemaic model accounts for the preservation 
of the Almagest. 

Until about four centuries ago, astrology was a 
seriously considered theory. The practice of astrology 
required the ability to predict planetary positions into 
the past and future, and the Ptolemaic model was the 
only theory that could do this. While astrology is false 
and is something Christians ought to avoid, it is good 
for us today that this motivation likely preserved the 
Almagest, for it contained far more than the Ptolemaic 
model. Ptolemy also included discussion of much 
of earlier Greek astronomy, giving us information 
about that history we would not otherwise know. 
The Almagest also contains a star catalog with 
1,022 entries. There were earlier star catalogs such 
as that of Hipparchus, but none of them survive. 
Ptolemy’s catalog is arranged according to the 48 
recognized constellations of the time. For each star, 
its brightness, position in its respective constellation, 
and ecliptic coordinates were listed. This allows us to 
unambiguously identify most stars in the catalog, as 
well as to accurately know how the Greeks pictured 
each constellation. The positions of the stars provided 
a baseline for measuring the rate of the precession of 
the equinoxes as well as searching for high proper 
motion stars.

Over much of the ensuing two millennia, it was 
assumed that Ptolemy did most of the work in the 
Almagest himself. However, over the past half century, 
there has been some debate among historians of 
astronomy about whether Ptolemy measured much of 
anything himself. Some historians have claimed that 
Ptolemy copied much of his work, such as his star 
catalog, from earlier sources and merely made some 
updates to the previous work. That reasoning calls 
into question whether the Ptolemaic model was truly 
Ptolemy’s work. At the very least, one can conclude 
that even if Ptolemy was more of a chronicler than 
an innovator, his recording in one place virtually all 
ancient Greek astronomical knowledge was a major 
accomplishment.

How can we categorize the scientific work 
of Ptolemy? The Almagest contains important 
information about the construction and use of 
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Fig. 4. The Ptolemaic explanation for retrograde motion. 
The blue dot represents the earth, and the red dot 
represents another planet. That planet moves along 
the epicycle at a uniform rate, while the epicycle moves 
along the deferent at a uniform rate around the equant 
at point E. Point C is the center of the deferent. These 
two simultaneous motions produces retrograde motion 
each time the planet passes on the epicycle closest to 
earth.
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astronomical instruments of the time. Ptolemy 
provided measurements (whether he made the 
measurements himself). Both these are significant 
contributions to metrology, which is an important 
part of science. However, Ptolemy is best 
remembered for his geocentric model, which best 
fits in the category of abductive reasoning. In terms 
of longevity (15 centuries), the Ptolemaic model 
probably is the most successful scientific theory in 
history. Since science is an attempt to understand 
the natural world and models frequently are part 
of that process, Ptolemy should be regarded as an 
outstanding scientist.

Before moving on, I ought to discuss how Ptolemy 
may have viewed his model and thus how he may 
have expected others to view his model. Mathematics 
is very important in science. The more quantitative 
a science is, the more robust that science is likely to 
be. To the ancient Greeks, geometry was the most 
advanced mathematics. So naturally, Greeks often 
expressed their scientific ideas in terms of geometry. 
And no one can doubt that the Ptolemaic model is a 
geometric model. But does that mean that Ptolemy 
intended the geometry of his model to be taken as 
reality? That is, did Ptolemy think that the planets 
literally spun around on some sort of large, invisible 
wheels? Perhaps not. Burtt (1932, 43–51) has 
argued that during the transition from the Middle 
Ages to modern times there was a profound shift 
in the mathematics used in science from geometry 
to algebra. Models in physics and astronomy today 
are expressed with mathematical equations that are 
at least algebraic but often are calculus equations. 
Does that mean that the equations themselves are 
tangible reality? No. It means that the equations 
are mathematical expressions of how some physical 
processes work.

For example, as I briefly discussed in Paper 1 
(Faulkner 2022), our understanding of electricity and 
magnetism is based upon the theory of fields. A field 
is an alteration of space. Charges produce electric 
fields, and moving charges produce magnetic fields. 
That is, charges and magnets alter space in a way 
that allows other charges and magnets to detect the 
presence of the original charges and magnets and 
respond in a predictable way. In 1865, James Clerk 
Maxwell published four equations that describe these 
fields and how charges and magnets react to those 
fields. Note that these four equations don’t tell us 
why electromagnetism behaves the way it does; the 
four equations merely tell us how electromagnetism 
operates. Maxwell’s equations often are written in the 
form of differential equations using vector calculus. 
Does anyone think these equations are reality? Of 
course not. We understand that Maxwell’s equations 
merely are descriptions of reality.

In similar manner, did Ptolemy think that his 
system of epicycles and deferents were reality? 
Perhaps not. Ptolemy may have offered his model as 
a utilitarian sort of model, a model that could be used 
to predict planetary positions without it necessarily 
being physical reality. That is, perhaps Ptolemy 
intended his model to describe how the planets 
moved but not necessarily why the planets moved. 
If so, then to treat the Ptolemaic model as reality 
commits the reification fallacy. As I pointed out 
in Paper 1 (Faulkner 2022), science is very good at 
telling us how something happens but is not too keen 
on telling why something happens. We err when we 
attempt to answer the question of why too deeply 
when using science. Whether Ptolemy intended 
his model to be taken literally, that is the way his 
Ptolemaic model eventually came to be viewed. This 
possible reification led to some bad consequences four 
centuries ago.

In 1901, divers found an orrery in a first-century BC 
shipwreck off the coast of Antikythera. At the time, it 
was realized that the Antikythera mechanism, as the 
device came to be called, contained a gear, but interest 
in this relic soon faded. It was not until the 1970s 
that scientists began to realize the sophistication of 
the Antikythera mechanism. It is now recognized as 
the earliest known analog computer. It could be used 
to predict the positions of the sun, moon, and planets, 
as well as eclipses (Freeth 2019). Construction of 
the Antikythera mechanism obviously predates 
the shipwreck (usually dated 70–60 B.C.), but how 
much earlier? The range of estimates vary as far 
back as 200 B.C. The shipwreck was two centuries 
prior to publication of Ptolemy’s model. Therefore, 
the Antikythera mechanism bears testimony to the 
degree to which pre-Christian era Greek astronomy 
had developed, largely through the influence of 
Hipparchus.

Geocentrism vs. Heliocentrism
I will conclude my account of ancient Greek 

astronomy with a brief discussion of the ancient 
Greeks’ attitude toward the question of geocentrism 
vs. heliocentrism. As I have pointed out, a few 
ancient Greeks believed the heliocentric model. 
Their conclusion generally stemmed from their 
measurements that showed the sun is much larger 
than the earth. Even without understanding gravity, 
it makes more sense that smaller objects will orbit 
larger objects, not the other way around. However, 
geocentrism remained the dominant cosmology 
among the ancient Greeks, and it would remain so in 
the West until four centuries ago.

The ancient Greeks gave several reasons why 
they thought the earth was stationary. One reason 
was that we don’t feel the earth moving. Certainly, 
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all motion that the ancient Greeks experienced 
could be felt, and so they reasoned that if the earth 
is moving, then we ought to feel that movement. 
It is a common misconception that we can feel 
motion. While we can’t feel motion, we can readily 
feel acceleration, which is change in motion. Until 
modern times, steady (non-accelerating) motion 
was not easy to experience. Most motion, such as 
riding in a cart or riding in an automobile, is not 
uniform. Such motion undergoes little bumps and 
sways. It is these small deviations from constant 
motion that we detect and misinterpret as detection 
of motion.

Another objection to heliocentrism attributed to 
Aristotle is that if the earth were moving around the 
sun, then the moon would be left behind as it tried 
to orbit the earth. It is not clear where the ancient 
Greeks got the idea that this is a problem. It didn’t 
seem to occur to them that the moon could be orbiting 
the sun along with the earth (which indeed is the 
case). But that requires knowledge of Newton’s law of 
gravity, which the ancient Greeks obviously did not 
possess. Perhaps the ancient Greeks just thought this 
made sense: that the moon’s motion is independent of 
the earth’s motion, and thus the moon would be left 
behind if the earth moved.

However, the best evidence the ancient Greeks 
had against the heliocentric model was the lack 
of parallax. The ancient Greeks correctly deduced 
that if the heliocentric model were true, then the 
stars would appear to assume different directions 
throughout the year as the earth changed its 
position. Attempts to measure parallax proved to 
be negative, so, being good scientists, most ancient 
Greeks rejected the heliocentric model. Therefore, the 
common misconception today that the ancient Greeks 
did not perform tests of hypotheses is not true. The 
ancient Greeks who persisted in heliocentrism did so 
against the best available evidence. Their response to 
the negative results of attempts to measure parallax 
was that the stars were too far away for measurable 
parallax. This turned out to be true, but the first 
successful parallax measurements were not made 
until the 1830s.

The Ancient Greeks and Physics
The ancient Greeks separated the terrestrial and 

the celestial realms. The rules that governed these 
two realms were very different. Perfection was the 
norm in the heavenly realm, so heavenly bodies 
followed perfect motion. As discussed in the previous 
section, this worldview required that heavenly bodies 
move uniformly around circles because circles were 
deemed the perfect shape and uniform motion was 
deemed to be perfect motion. Uniform circular motion 
is perpetual motion.

The rules of how things operated on earth were 
very different from the heavenly realm. Objects on 
earth do not move perpetually. Instead, on earth, 
effort (a force) must be expended to cause an object to 
move. A moving object will continue to move only if 
effort is continually expended to keep it moving. If one 
stops exerting a force on a moving object, the object 
soon comes to rest. This led Aristotle to conclude that 
on earth, rest is the natural state. Aristotle said that 
an object at rest will remain at rest unless an outside 
force acts upon it. Furthermore, Aristotle said that an 
object in motion will come to rest unless a force acts 
upon the object. As we shall see in the next paper, 
this contradicts Newton’s first law of motion.

The one exception to this rule was the propensity 
for objects to fall downward, a phenomenon that we 
today call gravity. Aristotle’s answer to the question 
of why things fall downward is that it is the nature 
of things on earth to fall downward. That is, things 
fall downward because that is what they do. To the 
modern mind, that may seem like a trivial answer to 
the question of why things fall, but keep in mind that 
science isn’t very good at answering “why” questions.

The usual answer today to the question of why 
things fall downward is Newton’s law of universal 
gravity. I shall discuss Newton’s law of gravity in the 
next paper, but suffice it to say for now that Newton’s 
law of gravity requires that mass attract mass. Why 
does mass attract mass in accordance with Newton’s 
law of gravity? Newton didn’t know, and neither does 
anyone else. All Newton’s law of gravity concerns 
itself with is a description of how masses attract 
one another, not why they do. Therefore, when we 
invoke gravity as the answer to the question of 
why things fall downward, aren’t we ultimately 
saying that things fall downward because they fall 
downward? How is that fundamentally different 
from Aristotle’s answer? Perhaps we ought not to 
be so harsh on Aristotle. Aristotle’s observation that 
things fall downward on earth is not fundamentally 
different from the more modern view of gravity. Both 
Aristotelian and Newtonian gravity are descriptions 
of how things operate, not why things operate the 
way they do.

So far, Aristotelian physics does a good job 
explaining our everyday world. Objects do tend 
to stay at rest unless we compel them to move by 
applying a force. And if we cause an object to move 
by applying a force to it, the object soon comes to 
rest once again unless we keep applying a force 
to maintain its motion. And an object tends to fall 
downward unless a force is applied to it to prevent 
that from happening. It’s no wonder that Aristotelian 
physics remained the status quo for two millennia.

Aristotle had other things to say about motion. 
Aristotle said that heavier things fall faster than 
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lighter things. Where did Aristotle get such a 
notion? One readily observes that feathers and 
leaves fall far more slowly than stones do. What 
is the difference between a stone and a feather or 
leaf? A stone obviously is heavier than feathers 
and leaves. Ergo, heavier things fall more quickly 
than lighter things. That is a reasonable inference 
based upon the information given. However, further 
study, such as comparing the rates of fall of stones 
of various weights, would have revealed how wrong 
that inference is. As incorrect as some of Aristotle’s 
conclusions were, they are examples of abductive 
and inductive reasoning.

By the time of Aristotle, it was widely accepted 
among the ancient Greeks that there were four 
fundamental elements that comprised matter 
on earth: fire, air, water, and earth. While these 
substances existed in their pure forms, some 
substances were made of combinations of these 
four elements. These four elements fit well with 
Aristotle’s theory of gravity. Earth, being the densest 
element, tends to fall downward, as does water, 
though less so because, as Aristotle reasoned, water 
is not as heavy as earth. Since air is lighter than 
both earth and water, it tends to be atop the first 
two elements, and fire, being the lightest of the four 
elements, ascends far above the other three. Aristotle 
added a fifth element, aether, as the substance of the 
heavenly realm. It would not suffice for the perfect 
heavenly realm to consist of the same material that 
the imperfect terrestrial realm is made of. As Latin 
became the dominant language in the West, the 
Greek term aether was replaced with a Latin word 
from which we get the English word quintessence.

Over the years, the teaching on the heavenly 
substance varied. Often it was taken as the material 
substance of which heavenly bodies were made, but 
in other contexts it was the medium that permeated 
the heavenly realm. This latter meaning was the 
sense when early nineteenth century physicists 
appropriated the term “aether” to refer to the 
mechanical medium of light. There are a few people 
today who continue to argue for a nineteenth century 
version of the aether. However, Maxwell’s theory of 
electromagnetism provided a much more satisfactory 
non-mechanical medium for light, and quantum 
mechanics in the early twentieth century gave yet 
another entirely different medium for light. I have 
encountered people in the flat-earth movement who 
advocate an Aristotelian view of quintessence as the 
physical substance of astronomical bodies, completely 
divorcing them from any physical similarity to things 
on earth. This belief may be unique to flat-earthers 
today, but it was commonly believed through the 
Middle Ages due to the popularity of Aristotle’s 
teachings.

One major impediment to progress of ancient 
Greek physics was Zeno’s paradoxes, attributed to 
Zeno of Elea (c. 495–c. 430 B.C.), who lived about a 
century before Aristotle. Zeno’s most famous paradox 
involves a race between Achilles and a tortoise. Since 
Achilles can run much faster than the tortoise can, 
the tortoise is given a head start. If the head start 
does not place the tortoise too close to the finish line 
of the race, Achilles can easily overtake the tortoise 
and thus reach the finish line before the tortoise 
and can win the race. “Hold on!” Zeno says. Before 
Achilles can overtake the tortoise, he must first reach 
the starting point of the tortoise. But during the time 
it takes Achilles to reach the tortoise’s starting point, 
the tortoise has moved to a new position. Therefore, 
before Achilles can overtake the tortoise, he must 
close the distance between the tortoise’s starting 
point and the new position of the tortoise. But during 
the time it took Achilles to reach this new position 
of the tortoise, the tortoise has progressed to yet 
another new position. As you can readily see, this 
process goes on indefinitely. Zeno argued that since 
Achilles must exhaust an infinite number of parts of 
a journey to overtake the tortoise, then Achilles can 
never pass the tortoise and thus cannot win the race.

You might say this is ridiculous and propose an 
alternate race, this time with two heats so Achilles 
and the Tortoise do not directly compete with one 
another. But once again Zeno says, “Hold on!” Zeno 
argues that before Achilles can reach the finish line, 
Achilles must first traverse half the distance to the 
finish line. But before Achilles can reach the halfway 
point, he must first go halfway to the halfway point 
(one-quarter the way to the finish line). And before 
Achilles can run one-quarter of the way, he must 
run one-eighth of the way, and so forth. Once again, 
Achilles must exhaust an infinite number of parts of 
a journey before he can even start running. It would 
seem then that not only can Achilles not complete the 
race, he also can’t even start it!

This reasoning would seem to imply that motion 
is impossible, which was indeed Zeno’s point. Zeno 
drove this home by yet another paradox. Consider 
an arrow in flight. At each instant of time, the 
arrow cannot be moving to where it is because it is 
already there. Nor can the arrow be moving to where 
it is not because there is no time elapsed for that 
to happen. Therefore, at every instant there is no 
motion. Since time is composed of instants, in which 
there is no motion, then motion is impossible. Zeno’s 
point was that motion is an illusion. Since motion is 
a foundational part of our physical world, then the 
world is an illusion too. This approach to philosophy 
is not a good foundation for physics or for any other 
field of science. Therefore, Zeno’s paradoxes require 
an answer.
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It is said that when the skeptic Diogenes heard of 
Zeno’s paradoxes, he simply rose and walked. To many 
people, this would suffice as a refutation, but Zeno would 
merely say that Diogenes’ movement was an illusion 
and hence Diogenes dodged the problem rather than 
answering it. A paradox is a proposition that leads to an 
apparent contradictory or absurd result. The key term 
is the word “apparent.” A proper answer to a paradox 
is called a resolution, in which one explains what is 
incorrect about the paradox, such as false premises, 
fallacious reasoning, or simply misinterpreting what 
one sees. While Diogenes’ response may seem brilliant, 
it hardly amounts to a resolution of Zeno’s paradox. 
Consequently, it is no surprise that there have been 
many attempts to resolve Zeno’s paradoxes, ranging in 
time from the ancient Greeks to today.

Most resolutions to Zeno’s paradoxes fall along 
the lines of Aristotle’s response. Aristotle noted 
that in the first two paradoxes, each portion of the 
trip covered ever-diminishing distances. Since the 
assumption was that the person was traveling at a 
uniform rate, then the amount of time required for 
each portion of the trip also was ever diminishing. 
Therefore, as the amount of distance required to 
travel approaches zero, so does the amount of time 
required to do so. Therefore, there is no problem.

While some philosophers accept this resolution, 
or variations thereof, apparently many philosophers 
do not. Though I had heard some versions of Zeno’s 
paradoxes while growing up, I did not learn of its full 
and proper discussion until I took an ancient and 
medieval philosophy course as an undergraduate 
student. Having completed the first semester of 
calculus and in my second semester of calculus, I 
immediately saw the resolution that was similar to 
Aristotle’s, raised my hand, and when the professor 
called upon me, I shared the answer. With a polite 
smile, the philosophy professor proceeded to disagree 
with me. At the time, I thought he was earnest in his 
opposition to what I still think is a refutation of the 
problem Zeno supposedly posed. Now I’m not so sure. 
Perhaps he didn’t disagree with me (remember the 
slight smile) and was merely playing devil’s advocate 
to keep the conversation going so that we students 
could learn to think through things and defend our 
positions. Philosophers love to do that.

While we can recognize parts of what we now 
know as science today in Aristotle’s work, some of 
his work seems to be counter to how science is done. 
Furthermore, the work of some other respected 
ancient Greek philosophers runs counter to science 
as we know it, and counter to Aristotelian thinking. 
This difference in attitude is reflected in Raphael’s 
fresco, “The School of Athens” (fig. 5). Plato and 
Aristotle are depicted at the center of the fresco, 
with Plato pointing upward while Aristotle gestures 

downward with a flat hand. This has led to many 
interpretations of what this contrast means. Most 
people understand this is showing Plato’s emphasis 
on his theory of forms while Aristotle was more 
concerned with the physical nature of our world.

Plato insisted that things in this world conform to 
ideal forms. For instance, how do we recognize that 
a horse is a horse? It is because horses conform to a 
concept of what a horse is. Most people are content 
with a concept of a horse being a mental abstraction 
based upon our experience of what properties horses 
have, but Plato thought that the relationship worked 
in reverse order. That is, rather than the concept of 
a horse deriving from our experiences with horses, 
the concept came first and the horses we experience 
merely reflect that reality. That final word “reality” 
is a key term in this discussion. For the concept of a 
horse to come first, there must be an objective reality 
related to it. It was this objective reality of the concept 
that Plato called the form. Idealized forms do not exist 
in this world—things in this world merely imperfectly 
reflect the idealized form that exists elsewhere. 
The elsewhere could be described as heaven. This 
ultimately led to the belief that physical matter is 
evil, which in turn was absorbed by the Gnostics. This 
aspect of Gnosticism led to heresy about the nature 
of Jesus because of a question of whether He had a 
physical body. It also led to Christians in the first 
century having questions about the resurrection. The 
Apostle Paul addressed or referred to Gnostic ideas 
several times (2 Corinthians 10:5; Colossians 2:8;  
1 Thessalonians 4:13–18; 1Timothy 6:20–21), as well 
as the Apostle John (1 John 1:1–4; 2 John 7–11).

Plato believed in a creator, though he never 
addressed who or what this creator is. This aspect of 
Plato’s teaching may have been the reason why many 
early church fathers came to embrace Neoplatonism. 
Examples include Clement of Alexandria, Origen 
in the early third century, and Augustine in the 
early fifth century. Consequently, these church 
fathers tended to interpret the Bible in terms of 
Neoplatonism, and many of these Neoplatonic ideas 
are still present in the church today. An examination 
of these Neoplatonic influences within the church 
today would be a very worthy study, but is far beyond 
the purposes of this paper. 

Plato’s theory of forms had a profound impact 
upon how people viewed the world. It jibed with the 
ancient Greek idea that this world is imperfect, but 
the heavenly realm is perfect. Thus, it bolstered the 
notion that there were two different sets of rules for 
the two domains, a belief that even Aristotle agreed 
with. However, unlike Aristotle, who had interest in 
this physical world, Plato’s emphasis on the primacy 
of heaven left the world in which we live unworthy of 
real interest. Besides, as Heraclitus had observed a 
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century before Plato, our world is in flux, so the rules 
of how our world operates are constantly changing, 
so why bother trying to figure out the order of this 
world when it was destined to change continually? 
As the church came to dominance in the West during 
the early Middle Ages, the interest in Neoplatonism 
over Aristotelian thought by many in the church led 
to the loss of Aristotelian thinking in the West.

Before moving beyond antiquity, I ought to contrast 
the Greek and Roman views toward science. You 
may have noticed that I have omitted any discussion 
of Roman scientists. There is a good reason for that—
there were no notable Roman scientists as there 
had been among the ancient Greeks. There were 
some scientists within the Roman Empire, such as 
Ptolemy, but Ptolemy was thoroughly Greek in his 
language and culture. The Romans were concerned 
with more practical matters, such as commerce 
and effective governance—their attention to these 
at least partially accounts for the longevity of the 
Roman Empire. The Greeks were more theoretical in 
their approach, which fostered a curiosity about the 

world. Many Greeks thought the natural world was 
worth studying just for the pleasure of learning how 
the world worked. However, to the Roman mind, the 
motivation for learning about how the world worked 
was more practical—how can I use this knowledge? 
While the Greeks constructed some grand buildings, 
the Romans exceeded Greek architecture and 
construction in every way. It is amazing that after 
two millennia many Roman roads and some Roman 
aqueducts are still used today. Or consider Rome’s 
Pantheon, constructed 19 centuries ago. While the 
Greeks were much better than the Romans in doing 
science, the Romans were superior engineers.

This brings up an important distinction between 
pure science and applied science. Pure scientists (as 
exemplified by the ancient Greeks) are more motivated 
by curiosity about the natural world without much 
regard for how practical knowledge may be gained 
from their studies. On the other hand, applied 
scientists (as exemplified by the ancient Romans) are 
motivated more by the goal of how useful knowledge 
may be gained by studying the world. Examples of 

Fig. 5. Raphael’s fresco, The School of Athens. Plato and Aristotle are at the center, with Plato pointing upward 
while Aristotle gestures downward with a flat hand. https://commons.wikimedia.org/wiki/File:%22The_School_of_
Athens%22_by_Raffaello_Sanzio_da_Urbino.jpg. Raphael, Public domain, via Wikimedia Commons



170 Danny R. Faulkner

pure sciences are physics, chemistry, and biology. 
Examples of applied sciences are engineering and 
medical sciences.6 Pure and applied scientists tend 
to view the world a bit differently, though there is 
considerable overlap. For instance, many geologists 
are employed in mineral exploration. The uses 
of minerals are obvious, so there is considerable 
available money for funding the search for mineral 
resources. In contrast, funding for pure geology 
research where there is no clear economic impact are 
much more meager. Since astronomy doesn’t appear 
to be of much practical application, it is perhaps the 
most extreme example of a pure science. However, 
this has not always been the case. As discussed 
earlier, astronomy probably was originally developed 
to produce calendars to aid in agriculture, though for 
religious purposes too.7 Since those problems were 
solved long ago, astronomy has developed into a far 
less directly practical science today.

Medieval Science
The Middle Ages have been improperly portrayed 

for a long time. They are often called the “dark ages,” 
a term coined by Petrarch, a fourteenth century 
Italian poet and scholar who is recognized as an 
early humanist. Soon other Renaissance figures were 
using the term. However, it was post-Enlightenment 
thinkers who took this term to new depths. This 
culminated in the conflict thesis of the nineteenth 
century, the notion that Christianity had held back 
progress during the Middle Ages and that progress 
reemerged in Europe only as the influence of the 
church weakened (Faulkner 2017, 29–30). Exhibit A 
in this argument was the claim the church taught the 
earth is flat and that this thinking was overturned 
by Christopher Columbus a little more than five 
centuries ago. The medieval scholar Jeffrey Burton 
Russell (1991) masterfully disproved this claim. I call 
this false narrative about Columbus the “Columbus 
mythology.”

Was there a general reversal of progress in 
the early Middle Ages? Yes. Did the church have 
anything to do with this decline? No. As the Roman 
Empire disintegrated due to its decaying culture 
and under the onslaught of Barbarian invasions, 
the unique features of the Roman Empire that 
fostered prosperity crumbled too. Wherever Rome 
conquered, it promoted commerce by constructing 
aqueducts, roads, ports, and other infrastructure that 
enabled trade and supported large cities. Rome also 
vigorously prosecuted piracy and highway robbery, 
making travel throughout its empire relatively safe. 
These factors provided peace and prosperity within 

the empire and probably accounted for much of the 
success and longevity of the Roman Empire. As the 
Empire ceased to exist, so did the relative peace and 
prosperity. Consequently, there was retrenchment 
in standards of living, which undermined the ability 
of economies to support research, study, and the 
dissemination of knowledge.

In the early fourth century, Christianity became 
a tolerated religion within the Roman Empire, 
effectively ending official persecution of the church. 
By the end of the fourth century, Christianity had 
become the official state religion of the empire. 
While many professing Christians undoubtedly 
welcomed this change of policy at the time, it ended 
up having a deleterious effect on the church. It 
further encouraged participation of false believers in 
the church and eventually wedded civil and religious 
authority. As the security of the Roman government 
eroded, people clamored for some semblance of 
order. Many leaders in the church were more than 
happy to provide governance, while civil leaders 
found it advantageous to use the growing influence 
of the church for political gain. This set the stage 
for the intertwining of church and state that would 
prevail for the next millennium. It is no accident 
that religious leaders consolidated power in Rome, 
as they were modeling their governance after that 
of the former Roman Empire. The growing influence 
of the Roman Catholic Church amidst the perceived 
decline of progress in the Middle Ages led to the 
false conclusion that the former caused the latter. In 
reality, both were the result of the fall of the Roman 
Empire.

Nor were the Middle Ages quite as dark as 
often portrayed. For instance, the Venerable Bede 
(672/3–735) is considered the most learned man of 
the seventh and eighth centuries. There certainly 
were many other scholars during the Middle 
Ages, but unfortunately much of their writings 
and teachings remained within the walls of their 
institutions, mostly monasteries. The monastic 
philosophy did not encourage dissemination of 
intellectual accomplishments obtained within 
institutions. This is the opposite to how science is 
practiced today.

Much of medieval education focused on the 
seven liberal arts developed by Martianus Capella 
(c. 410–420) in the early fifth century, but reflecting 
much earlier ancient Greek thought, such as that of 
Plato. The seven liberal arts were divided into the 
trivium, followed by the quadrivium. The trivium 
consisted of grammar, logic, and rhetoric. Grammar 
was the proper use and understanding of language. 

6 Interestingly, the famous engineer Henry Petroski (2010) has argued that engineering is not science. 
7 This is indicated in Genesis 1:14 as one of the purposes of the heavenly bodies. The Hebrew word moed translated as “seasons” 
refers to the Hebrew festivals, the dates of which were determined by lunar phases.
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Logic taught students how to properly form sound 
arguments and identify fallacious arguments. 
Rhetoric was the art of persuading others. Upon 
completion of the trivium, students progressed to 
the quadrivium, consisting of arithmetic, geometry, 
music, and astronomy. It is interesting that of the 
seven liberal arts, the only science we would recognize 
today is astronomy. That is likely due to the fact that 
other sciences, such as chemistry and physics, were 
not nearly as developed as astronomy (encapsulated 
by the Ptolemaic model).

The situation in western Europe began to change 
dramatically around A.D. 1100. By the time of the 
fall of Rome six centuries earlier, the empire had 
already split east-west. In the east, Greek remained 
the lingua franca, but in the west, Latin had replaced 
Greek as the common language. Eventually, Latin 
developed into the various Romance languages 
in the western end of the former empire. With the 
disuse of Greek in the west, Greek texts largely 
disappeared, with only some of them being replaced 
by Latin translations. Because of the influence of 
Neoplatonists in the Western church, the writings of 
some ancient Greeks, such as Aristotle and Ptolemy 
largely disappeared in the West. Meanwhile, the 
Muslim conquest of portions of the former eastern 
part of the Roman Empire brought some of these 
works to the attention of Muslim scholars. Of 
notable attention was the Almagest. While Muslim 
astronomers preserved and disseminated Ptolemy’s 
work, they made no significant improvements upon 
it. By A.D. 1100, many of these ancient Greek works 
largely lost in the West began to make their way 
back to the West, where they were translated into 
Latin and sometimes into common languages. This 
rekindled interest in the works of ancient Greek 
science had a profound impact on the West.

In the thirteenth century, Thomas Aquinas 
(1225–1274) did for Aristotle what Augustine had 
done for Plato eight centuries earlier. Aquinas 
wedded many of the teachings of Aristotle to Roman 
Catholic teaching. Since Aristotle was a geocentrist, 
the Bible was interpreted as being geocentric, which 
set up the Galileo affair a few centuries later. Many 
people understand this, but apparently are ignorant 
of the fact that Aristotle also taught that the earth 
is a globe, which also became the interpretation that 
Aquinas gave to the Bible, though that probably was 
already a widespread belief. This alone is an effective 
refutation of the Columbus mythology about the 
Middle Ages.

Much of this renewed emphasis on Aristotle’s 
work focused on his logic rather than his science. 
This gave rise to the myth that people in the Middle 
Ages did not do empirical science but relied upon 
deductive reasoning to reach conclusions about the 

world. A related myth is that during the Middle 
Ages people didn’t seek answers to questions about 
the world themselves but looked to Aristotle or other 
authorities to find answers to such questions. While 
this attitude was common in the Middle Ages, is it 
not common today as well? For instance, if a person 
today wanted to know how many teeth a horse has, 
would that person find the answer by counting the 
number of teeth horses have? Probably not. The most 
likely course of action today would be to look up the 
answer, usually online. How is that different from 
looking up the answer in Aristotle? Even scientists 
today look up the answers to questions they have. 
Only after a scientist finds that a question he has 
asked has not been answered satisfactorily might 
he set out to investigate the answer for himself with 
original research.

Roger Bacon (c. 1219–1292), a contemporary 
of Aquinas, challenged this emphasis on logical 
deduction to study the world and high reliance 
upon Aristotle as an ultimate human authority on 
nature. Bacon advocated an empirical approach 
to studying the world, an approach very similar to 
that of Francis Bacon (no relation) more than 300 
years later. Apparently, the work of Roger Bacon 
was not entirely successful in changing the medieval 
philosophy of science. Perhaps the time was not quite 
right, for three centuries later, Francis Bacon was 
far more successful in establishing science as we now 
know it. Roger Bacon’s own investigations had led 
him to the conclusion that Aristotle was wrong about 
a few things. In addition to the philosophy of science, 
Roger Bacon made major contributions in linguistics, 
optics, and alchemy. He proposed a reform to the 
Julian calendar that was similar to the Gregorian 
calendar four centuries later. Roger Bacon was the 
first European to publish the formula for gunpowder.

A few decades later, the early fourteenth century 
scholastic philosopher and theologian William of 
Ockham (c. 1287–1347) developed the principle of 
parsimony. Though not recognized as a scientist,  
Occam’s razor, as his principle of parsimony is often 
called, is very important in science. Occam’s razor 
is a rule that when presented with two competing 
hypotheses that make the same correct prediction, 
the hypothesis with the fewest assumptions is more 
likely to be true. This principle is recognized to be 
reliable in any type of inductive (or perhaps more 
properly, abductive) reasoning. For example, in a 
court case, the attorneys on either side provide their 
versions of events that they claim explain the evidence 
presented in the trial. It often is the responsibility of 
the jury to decide which version is more likely to be 
true. Occam’s razor is a valuable tool in reaching a 
verdict. In similar manner, scientists often consider 
competing hypotheses that may equally explain 
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the available evidence. Applying Occam’s razor, the 
simplest hypothesis is usually accepted. As we shall 
see in the next paper, application of Occam’s razor 
was a crucial test in deciding between the Ptolemaic 
model and the heliocentric model.

Since I have focused on astronomy in this discussion 
of the history of science, I must make mention of 
Johannes de Sacrobosco (c. 1195–1256). Around 
A.D. 1230, Sacrobosco wrote De Sphaera Mundi, (On 
the Sphere of the World). This was a treatment of 
the Ptolemaic model, and it remained the standard 
text on astronomy in the West for four centuries, 
making the transition from copying manuscripts by 
hand to the printing press. What eventually caused 
Sacrobosco’s work to fall into disuse was the general 
rejection of the Ptolemaic model in the seventeenth 
century. Many people misunderstand the title of 
this work, thinking the spherical world refers to the 
earth. Rather, the spherical world of the title is a 
reference to the celestial sphere that surrounds the 
earth. However, like Ptolemy before him, Sacrobosco 
made it very clear the earth is a globe and gave 
several reasons why we know this.

The Muslim conquest made one other inadvertent 
contribution to knowledge in the West. When 
Constantinople fell in 1453, many Greek texts were 
rapidly transported to the West, causing revival of 
interest in ancient Greek texts. Many of these were 
New Testament manuscripts, but many others were 
devoted to science and philosophy.

Born a year before the fall of Constantinople, 
Leonardo da Vinci (1452–1519) is recognized as a 
true Renaissance man. While most known for his 
art, da Vinci also made contributions to architecture, 
engineering, and science. Da Vinci’s only notable 
contribution to astronomy was his explanation of 
earthshine on the moon, something that apparently 
no one before him explained.

I wish to mention one other person in the transition 
from late medieval to modern times. In 1528, Jean 
Fernel (1497–1558) published Cosmotheoria, in 
which he made a major step in the development of 
geodesy. Fernel accurately measured the length 
of a degree of arc along a meridian of longitude. In 
modern navigation parlance, this distance is 60 
nautical miles. Multiplying Fernel’s measurement by 
360 yields the earth’s circumference, and the earth’s 
radius easily follows. Fernel’s result was within 1% of 
the correct value. Given that Fernel accomplished this 
before the invention of the telescope is remarkable.

Building upon an ancient Greek notion, there 
developed in the Middle Ages a sort of philosophical 
or theological geocentrism that mirrored physical 
geocentrism. In the Aristotelian worldview, things 
fall downward because that is the way the world 
operates. There is no need to further investigate the 

matter. It was also recognized that moral depravity 
tends to progress from bad to worse. That is, morality 
goes downward much as objects fall downward. 
Therefore, there was an equation between the 
physical falling of objects and declining morality. 
Since the earth is the center of the universe, it is 
fitting that hell is below the earth’s surface, perhaps 
even at the earth’s center. Like physical objects, once 
one is at the earth’s center, no further fall is possible.

Where is man’s place in this cosmology? Man is 
perched right above perdition in a very imperfect 
world. Much higher, in the heavenly realm, things 
are perfect. Thus, man is located at the least favorable 
place in God’s creation. However, the revisionism 
of the nineteenth century conflict thesis reversed 
man’s position. The claim was made that medieval 
theologians placed man at the center of creation 
because this was God’s most favored location, when 
the reality was precisely the opposite.

Conclusion
I have briefly reviewed the history of science from 

its roots among the ancient Greeks through the 
Middle Ages. At each stage, I have endeavored to 
classify the type of science important individuals did 
in terms of the discussion of Paper 1 (Faulkner 2022). 
It is interesting that there were no ancient Roman 
scientists of note. This indicates a difference in 
worldview between the ancient Greeks and Romans. 
As the order of the Roman Empire disintegrated 
into the chaos of the early Middle Ages, the church 
in Rome assumed greater power, leading to the 
blending of church and state and eventually to the 
authority of Rome to dictate other matters, such as 
the conduct of science. The loss of order contributed 
to the stalling of science in the early Middle Ages, 
but the dominance of Neoplatonism over other Greek 
philosophers changed the worldview, which played 
a role too. The revival of interest in Aristotle and 
other Greek sources in the late Middle Ages sparked 
renewal in science, though this was tempered by the 
worldview of the Middle Ages that contrasted to that 
of the ancient Greeks. This set the stage for conflict 
as science as we know it began to emerge in the 
seventeenth century. I shall review this conflict and 
the transition to modern science in the next paper in 
this series.
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