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Abstract
We explore the effect of cosmic voids on the light-travel-time-problem (LTTP) in a young age creationist 

(YAC) cosmology. We show that voids in an expanding universe can result in travel times much shorter 
than the typical times obtained in a globally homogeneous universe. We discuss the popular view that 
space is expanding in the Friedman-LeMaitre-Robertson-Walker (FLRW) cosmologies. Contrary to that 
is the author’s view that space does not expand. The popular explanation that space can expand 
faster than the speed of light in general relativity is a peculiarity of the fact that the homogeneous 
matter in the FLRW is coterminous with the space, so that the expanding matter has been confused 
with expanding space. For example, an expanding cavity formed by the expansion of surrounding 
matter is not a case of expanding space. Rather, it is an empty cavity of increasing volume This author 
claims: (1) general relativity (GR) is the covering theory of special relativity, nothing in GR precludes 
global velocities greater than the local speed of light; and (2) by way of Mach’s principle, light in the 
expanding universe is dragged by the expanding matter (not space). This Machian view is in line with 
the principle of GR that matter is the source of gravitational dynamics and the distortion of space.  
Within GR matter has physical efficacy, empty space does not. Inertial dragging by the Hubble flow 
always results in the light traveling faster than the expanding matter in such a way that the local speed 
of light is c. We derive the travel time of light emitted a distance r in an expanding universe to arrive at 
r = 0 in a FLRW cosmology. We derive the equivalent time of flight for traversing a cavity of proper radius 
r. We find that during the expansion, light in the cavity takes significantly less time than the light in the
expanding universe model. If the earth is in a local void, with multiple voids along the light path, then
light reaches the earth faster than in the FLRW models.  This reduction of travel time when coupled with
my GR model (Dennis 2018) will add a further refinement.

Keywords: light travel time problem, inhomogeneous cosmologies, general relativity, young age 
creationism, Mach’s principle, inertial dragging, space expansion, superluminal speeds, cosmic voids

Introduction
In this paper, I argue that the standard paradigm of 

expanding space as the explanation of superluminal 
speeds in general relativistic cosmologies is ill-
founded and that expanding space is unfavorable to 
the light travel problem. 

The popular explanation that space can expand 
faster than the speed of light in general relativity is a 
peculiarity of the fact that the homogeneous matter in 
the FLRW is coterminous with the space, so that the 
expanding matter has been confused with expanding 
space. For example, an expanding cavity formed by 
the expansion of surrounding matter is not a case 
of expanding space. Rather, it is an empty cavity of 
increasing volume. The confusion of the matter with 
the space is due to the highly symmetric assumptions 
of the FLRW model and the use of comoving 
coordinates that model the symmetry. We will show 
that there is a vast collection of inhomogeneous 
physical situations for which comoving coordinates 
are invalid. In those cases there is no confusion of the 
matter with the space.

The expanding space explanation based on the 
unrealistic homogeneous FLRW solution is inimical 
to YAC models. As an example, consider the distant 
object GN-z11. The image we see today is from light 
emitted 400 million years after the big bang. Since 
it is assigned the distance of 32 Gly at the current 
epoch1, it took the light 13 Gy (current epoch is 
13.4 Gy according to naturalistic big bang model with 
expansion from a fictional point singularity) to reach 
the earth. Since it is 32 Gly distant and it arrived at 
that distance in 13.4 Gy, its speed is greater than the 
speed of light. However, the light we see today was 
emitted 13.4 Gy ago when GN-z11 was approximately 
only 2.7 Gly from earth. This distance is derived from 
the red-shift of GN-z11 (z = 11.09). From the redshift-
scale relationship (Mukhanov 2005, 58):

                               .

We obtain:

                           .
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1 It should be noted that the distance at current epoch (i.e., now) is unobserved. It is a theoretical distance computed from the metric 
of the cosmological model that is employed. Note that in the following discussion, I will write in accommodation to the standard 
cosmological model and use its times and distances.
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So that distance at emission is 1/12 of current distance, 
that is, approximately 2.7 Gly.

Thus, we see that the superluminal expansion 
of space in the homogeneous models to account for 
superluminal speed of matter actually results in 
a light time of flight greater than the distance at 
emission (2.7 Gly). The purported light travel time of 
13.4 Gy corresponds to a travel distance of 13.4 Gly—
much greater than the 2.7 Gly distance at emission.  
In this case the effective speed of light is just 20% of 
the vacuum speed of light. This is an indication why 
space expansion results in longer light travel times.

In this paper we argue:
(1) space does not expand. Expansion of space as

a motive power suggests that even expanding
empty space can reduce the incoming effective
speed-of-light. We claim empty space has no such
ability;

(2)	rather, general relativistic cosmologies have
Machian effects, in which matter establishes
the inertial frame of reference, not an abstract
comoving coordinate system;

(3) the expanding matter (rather than expanding
space) results in light being dragged along with
the matter via the time-dependent gravitational
field in the universe. This explains the slowing
of incoming light in the FLRW models in regions
where the density is not zero;

(4) and finally, from (3), since matter streaming away
impedes distant light progress toward the earth,
the presence of voids2 in the intergalactic regions
would reduce the large travel times.

We do not argue that the reduction due to voids
will result in a complete reduction in the light 
travel time, but it does potentially produce factors 
that significantly ameliorate the LTTP. Another 
conclusion is that adherence to a universal principle 
that even empty space can expand is inimical to YAC. 
I will use the term expansion of space to refer to the 
idea that space per se (regardless of energy content) 
can expand. The idea that space itself is a substance. 
The view that I propose denies the expansion of space 
concept, and asserts that it is expansion of matter, 
with attendant frame dragging, that accounts for the 
phenomena. These two views are not complementary 
but are metaphysically antithetical.

The outline of the paper is as follows. We will 
discuss Mach’s principle, inertial frame dragging, 
and the issue of expanding space. Following a brief 
discussion of the geometry of the FLRW cosmologies, 
in particular the open FLRW with flat global 

geometry, we will analyze particle dynamics in 
the open FLRW cosmology by solving the geodesic 
equations; these equations demonstrate the Machian 
frame dragging. Finally, we numerically solve the 
light travel time in both the open FLRW cosmology 
and the light travel time in voids to demonstrate that 
streaming matter increases the light travel time. 
Note, that within this paper we analyze light travel 
time reduction within the open FLRW cosmology 
interpreted in accommodation to the secular view of 
an old universe.

Notation is as follows: c is the one way speed of 
light, and G is the universal gravitational constant. 
We will also use natural units, c = G = 1. Also,  
dΩ2 = dθ2  +  sin2θdφ2 denotes the metric on the unit 
sphere. Also, we will use the following abbreviations 
for partial derivatives:  

and 
                .

Mach’s Principle or Expanding Space?
A puzzling effect of the expanding FLRW solutions 

is that the matter exhibits speeds exceeding the 
numerical value c of the speed of light. In light of 
special relativity (SR) that nothing can travel faster 
than light, this fact is seen as a puzzling problem 
to some. The typical explanation is that the SR 
speed limit does not apply to space, and that the 
SR speed limit only applies to matter. It is argued 
that space expansion can be faster than light and 
that the cosmic matter (somehow fixed in space) is 
just expanding with the spatial expansion. I believe 
this argument is too facile and does not match the 
physics. It is also misleading as objects embedded in 
space do not increase in size as the space expands. If 
space is expanding, then one would expect all objects 
to become increasingly larger as space expands. 

A problem with the expanding space solution is 
that it ignores key facts of general relativity and the 
methodological position of covering theories.3 The 
first fact is that in GR, matter is the source of curved 
space-time. The second fact is that special relativity 
only implies that locally matter moves with a speed 
less than c in inertial frames. By local we mean that 
light emitted from a point always travels faster 
than a particle of matter at that point. Stated in 
other terms, the velocity vectors of time-like curves 
always lie in the interior of the future null cone at 
each point of the universe. The covering theory issue 
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2 It should be noted that Johnson (2018) also proposed voids as a solution to the LTTP. His analysis was based on gravitational 
potentials which is a different effect than the Machian effect described herein.
3 A theory A is said to be a covering theory of theory B if the predictions of theory B can be obtained as special cases of theory A. The 
covering theory typically employs additional fundamental constants. The covered theory (SR) can be obtained from the covering 
theory (GR) by setting the gravitational constant G to zero. Other examples, include setting Planck’s constant to zero to retrieve 
classical theory from quantum mechanics, or taking the speed of light as infinite to recover Newtonian mechanics from SR.
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is that GR is the covering theory of SR and thus is 
the determiner of global speeds of matter, not SR.4  
The other feature of the expanding solutions is that 
the matter is homogeneously distributed throughout 
the cosmos and is everywhere coterminous with the 
supposed expanding space. It should be obvious 
that the homogeneous assumption is clearly an 
idealization, a simplifying assumption adopted to 
model the gravitational dynamics of the universe 
in the large. In such a case, small-scale phenomena 
are not realistically modeled. Between galaxies 
are large regions devoid of significant matter, 
and in such voids space is approximately flat 
static Minkowski space. Space is not expanding in 
those regions. In short, the popular explanation, 
due to the homogeneous distribution of matter, 
conflates space with the matter. We will show that 
an interpretation that respects all of the above is 
that in GR (the covering theory of SR) matter can 
travel globally faster than light while everywhere 
the light speed always exceeds the expansion rate 
by ±c. We illustrate this for a simple case of the 
Hubble expansion at distance D and at the current 
epoch t with Hubble constant H0. We provide a brief 
explanation here; a detailed mathematical proof is 
given in the appendix. For the FLRW cosmologies, 
the speed of an object at distance D at constant 
comoving coordinate r at cosmic time t is given by 
the Hubble relation: 

                  .
It is well known that for large D this speed can be 
larger than the SR speed of light value c.

For photons, the comoving coordinate is not 
constant.  As derived in the appendix, the effective 
global speed of incoming and outgoing light is (+ for 
outgoing; − for incoming):

                        .		
From this it is important to note that not only does 

matter travel with speed greater than c, but light 
also travels faster than c. Equation (1) implies that at 
every point in the homogeneous matter regions, the 
local speed of light is (subtracting the global Hubble 
flow” vH = H0D):

                   .
Thus, locally the speed-of-light constancy and 

subluminal speed of material systems is satisfied.

These observations go a long way in disarming the 
faster than c paradox. The reason for speeds faster than 
c lies in the gravitational field of matter in motion. The 
expanding mass exerts inertial dragging on all forms of 
matter. Again the lesson is that we must analyze the 
effects in terms of a theory that includes gravitational 
effects. That theory is general relativity that supercedes 
special relativity. In order to drive the point home, we 
also point out that it was Einstein’s famous elevator 
gedanken experiment that led to the development of 
GR. In the free-falling elevator, particles in the interior 
exhibit inertial behavior in the presence of an exterior 
gravitational source. That experiment established that 
free-falling frames of reference are the inertial frames. 
Finally, note that the expanding matter in the FLRW 
models is matter free-fall, and thus is inertial. Light, 
relative to the superluminal matter, is thus shown to 
locally move at speed c by consideration of the elevator 
experiment. This shows the consistency of the theory 
of GR and why matter traveling faster than the local 
speed of light is not so paradoxical after all. The notion 
of an expanding space to explain the phenomenon is 
unfounded.

In the next section we will discuss the extent of 
Machian principles in general relativity. Inertial 
frame dragging is considered one such Machian effect.  

General Relativity, Mach’s Principle 
and Inertial Frame Dragging

The roots of Mach’s principle5 can be traced back to 
Newton’s famous bucket experiment. The conclusion 
for Newton was that inertial forces (such as the 
centrifugal force) occur when objects rotate relative 
to his putative absolute space. Mach found the idea 
of postulating an absolute space and imbuing it with 
such inertial powers to be contrary to the empirical 
method in which motion is aways measured relative 
to other bodies. Imagine an entirely empty universe.
Without bodies, there was no way to measure 
absolute space. Mach, as an explanation of the 
Newton bucket experiment, identified the origin of 
inertia with the matter in the universe, for example, 
the distant stars. This Mach’s principle influenced 
Einstein when he developed GR. Physicists working 
in GR have searched for examples of Machian effects 
within solutions of the Einstein field equations (EFE); 
we will not detail that research  in this paper. Today 
it is generally recognized that GR contains Machian 
effects, even though it is not as thoroughly Machian 

4 Special relativity is in essence a theory of optics (and electromagnetism) in the absence of gravity. Einstein took Maxwell’s 
equations as the fundamental equations rather than Newtonian mechanics. SR (including relativistic mechanics) was then 
developed from the invariance of Maxwell’s equations with respect to Lorentz (and more broadly Poincare) transformations.
5 There are many expositions of what precisely Mach’s principle is. In this paper I am taking it simpliciter that physical properties 
(and inertial reference frames in particular) are determined by the relations between material objects alone (not some absolute 
spatial/temporal arena). Mach expressed this simpler view in his book Science of Mechanics (Chapter II, Section VI). Einstein 
following Mach’s ideas on the origin of inertia, coined the phrase Mach’s principle.

0Hv H D=
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as some had hoped.6 A prime example of such effects 
is the inertial dragging of frames by the motion of 
nearby matter—indicating that inertial frames 
depend in a relative manner on nearby matter (rather 
than on absolute space). An example is provided by 
frame dragging in the rotating Kerr geometry. Two 
references for essays on Mach’s principle are Sachs 
and Roy (2003) and Barbour and Pfister (1995).

Herein, we argue that the expansion of matter 
(which is in free-fall) in the FLRW cosmologies is the 
correct reference for inertial frames and that as a 
consequence nearby matter is dragged by the mutual 
motion of the matter (gravitational field) in the 
universe (fig. 1). Where there is no expanding matter 
there is no expansion of space (fig. 2). This cavity 
model is discussed below. We also argue that the 
special relativistic speed-limit does not apply in GR—
GR is the covering theory of SR, not the reverse. The 
only constraint in GR is that locally no particles with 
mass can travel faster than light. The effective global 
speed of the light and of massive particles can exceed 
the special relativistic value, c, of the speed of light. 

This motion of matter is contained in the 
calculation of the stress-energy of the universe. 
And the stress-energy in turn is the source of the 

gravitational field. Thus, the view emerges that 
matter (stress-energy) produces the gravitational 
field (and as such curvature) and that the curvature 
produces altered motions of matter in free fall 
(the inertial frames, geodesic paths). Such an 
interpretation is very satisfying and avoids giving 
occult powers to space—a notion contrary to the 
relativity principle of GR (fig. 3). 

This Machian view is further enhanced by the fact 
that if it is space expansion that is the motive force, 
then even the sizes of objects should increase with 
the expansion of space. Such is not the case. Matter 
is not cemented to space by way of a dark epoxy.7 If 
one is committed to the expanding space paradigm, 
then it seems that one is also committed to a belief in 
absolute space and that all matter with zero peculiar 
velocities in the universe is at rest (motionless) with 
respect to the expanding absolute space. This is a 
rather peculiar interpretation that is at odds with the 
Machian relativistic point of view. In fact, as we show 
below, matter with peculiar velocities come to a state 
of rest with respect to the global flow. If it is space 
that is the reference frame then the natural state 
of matter in this interpretation would be the state 
of rest with respect to the absolute space. This is 
Aristotelian physics, and is at odds with the Machian 
interpretation of GR espoused in this paper.

6 The aspect of Mach’s viewpoint that is not  fully contained in GR is the origin of inertia. That concept was that inertia of every 
particle is determined by the total mass distribution of the universe. This occurs in a closed cosmology only, cf. Misner, Thorne, and 
Wheeler 1973, 543–549. Thus GR, as a theory per se, does not support the entire philosophy of Mach, although some solutions of 
the EFE do have differing aspects of Mach’s ideas. This limitation does not affect the dragging of matter by a gravitational field 
described in this paper.
7 The pedagogical device of galaxies painted on an expanding balloon has been criticized in texts on cosmology. See, for example, 
Peacock 1999, 87. Also Davis and Lineweaver 2004 have addressed other misconceptions of expanding cosmologies, to which the 
reader may refer.

Fig. 1. In the FLRW model matter is distributed 
uniformly throughout the universe. The solution 
is maximally symmetric, no point is geometrically 
distinguished from any other. Every point in the 
universe sees the exact same motion of matter. In the 
figure, green arrows indicate the velocity field seen by 
a stationary observer at the center. Recession velocities 
increase (indicated by the longer arrows) with distance 
according to the Hubble law.

Stress Energy  Gravitational Field  Geodesic Motion 
Fig. 3. Causal chain of Theory of General Relativity.

Fig. 2. In the cavity model matter is missing inside of 
R = D. Recession velocities increase (indicated by the 
longer arrows) with distance according to the Hubble 
Law outside R = D.
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Fig. 4 is a plot of particles with peculiar velocities 
in the open FLRW cosmology that demonstrates the 
Machian dragging of particles by the global flow of 
matter. The trajectories were obtained by solving 
the geodesic equation of motion of particles. Each 
curve is a particle with differing peculiar motion at 
an initial time. The dark blue line has the greatest 
peculiar velocity, followed by the green lines and 
finally the light blue has the smallest peculiar 
velocity. The central black line is a particle with zero 
peculiar velocity. Note that as the expansion of the 
matter evolves, the peculiar motion is damped. Each 
trajectory asymptotically approaches a constant 
comoving coordinate, thereby joining the cosmic 
flow and at rest relative to the cosmic inertial frame 
(determined by the matter). 

In the next section we introduce a simple cavity 
solution and show that the interior is a static (non-
expanding) flat space. As a result, light travels at the 
special relativistic speed of light in cavities. There is 
no expanding matter in the cavity to drag the light. 
We then provide the details of solving the peculiar 
motions in the open FLRW homogeneous model and 
interpret the solution in terms of Mach’s principle. 
We will then compare the light travel time in the 
expanding homogeneous model with the travel time 
in the cavity and show that the expanding matter 
significantly increases the travel time to reach the 
earth. (The light has to swim against the inertial 
tide.)

Inhomogeneous Models
As was shown in Dennis (2018), spherically 

symmetric inhomogeneous models can be constructed 
in comoving coordinates. A good reference for this 
analysis is the seminal paper by Bondi (1947). To 
solve for an inhomogeneous  cosmology with a cavity 
we will use Bondi’s (1947) equations.8

The metric interval for the general case of an 
inhomogeneous spherically symmetric space-time 
in comoving coordinates of freely falling particles is 
given by the form (using natural units):

 This is a general isotropic and time dependent 
metric. Due to isotropy the metric is independent of 
the angular coordinates. Each particle is labeled by a 
fixed radial coordinate r (at an arbitrary time) and its 
constant angular location. These coordinates follow 
the particles and do not change, hence the term 
comoving. From this we see that the four-velocity of 
the matter at fixed                       is:

                                                                   .

From the normalization condition for time-like 
curves, we get:

This implies that if we choose the interval s (arc 
length parameterization) as the coordinate along 
the time like curves, then g00 = –1. Therefore, all 
clocks are radially free-falling at constant comoving 
coordinate r and thus register the cosmic time  
dt2 = –ds2, which would be the age of the particles. 
Note that R(t, r) is no longer a radial coordinate but a 
function of the comoving coordinate r and the proper 
time t. However, the area of a sphere at time t and 
radius r is still 4ΠR2 (t, r).  

Anticipating later discussion, we point out that this 
form of the metric in comoving coordinates excludes a 
broad class of physically realizable cosmologies. For 
many physical solutions the comoving coordinates 
break down and become invalid depending upon the 
initial energy conditions. We will point this out later.

The EFE with cosmological constant Λ = 0 and a 
pressureless dust then reduce to the following set 
of independent equations (LTB model historically 
developed by Lemaître, Tolman, and Bondi):

In these equations M(r) is the gravitational mass 

Fig. 4. Machian damping of peculiar motion in the open 
FLRW Model.

8 Change of notation is as follows: Bondi’s Y is my R; Bondi W2 = 1 + 2E(r).
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within a radius r from the center of symmetry. It 
is not to be confused with the total invariant rest 
mass that appears in stress-energy tensor by way 
of the invariant density ρ. M(r) measures the rest 
mass energy plus (a negative) gravitational binding 
energy. For example, for closed solutions the total 
gravitational mass can be zero even though ρ (which 
is always non-negative) is not. E(r), which it is 
important to note, is a constant of integration. It is 
the energy and curvature at a given comoving radius 
r. E(r) is required to satisfy the inequality E(r) > –1/2. 
For E(r) < 0 we have a closed universe with positive 
curvature which expands from an initial big bang 
to a maximum radius then collapses to a final big 
crunch. For E(r) = 0 the universe is open and flat (zero 
curvature), while for E(r) > 0 (and M non-zero) the 
universe is open and hyperbolic (negative curvature).9  

Equations (3)–(5) only model the gravitational 
interaction; no other forces are modeled. The energy 
function E(r) is a constant of integration and is 
arbitrary. It would be the initial energy distribution 
of the universe as a function of the radial coordinate. 
This would be the initial energy distribution of the 
matter created by God.  

Looking at equation (3) we see that it is remarkably 
Newtonian in form. If there is a region (cavity) where 
M(r) is zero for r < r0, then the scale R is a linear 
function of time. This corresponds to a cavity wall 
moving at constant speed with scale:

It is important to note that in regions where 
there is no mass that the scale factor is entirely 
independent of any physical content. This is due to 
the fact that there is no matter that can be the carrier 
of the energy E(r). This shows that the choice of E 
in empty regions is merely mathematical. This too 
is consonant with Machian dragging. The comoving 
coordinate scale is only coupled to a physical effect 
when there is moving matter. 

For simplicity we will examine the case for which 
the cavity wall is at rest. This case does not alter the 
conclusions. Allowing the cavity wall to expand at 

constant speed still yields that space is not expanding 
in the cavity, but rather the cavity wall is receding. 
In particular, we take E(r) = 0 in the cavity (since 
M(r) is zero in the cavity).10 This choice corresponds 
to inertial test particles at rest in the cavity relative 
to the cavity wall. The test particles stay at rest since 
the interior is flat and static Minkowski space. It is 
devoid of gravity. So, E(r) = 0 results in a continuous 
comoving coordinate sytem at the cavity wall. 
Clearly in this case of regions with no matter there 
is no expansion of space. This is consonant with 
the Machian view that matter is the source of the 
gravitational dynamics and the motion of matter, not 
space. We will elaborate on the above in Appendix C.

Observe also that equation  shows that speeds 
greater that c are allowed in GR, since solving for the 
expansion rate gives:

Thus we see that GR does not preclude global 
velocities greater than the local speed of light. We 
should note also that the GR equations do not directly 
include other energy sources (except as modeled in 
the stress-energy tensor) since E(r) is an arbitrary 
constant not specified by quantities appearing in the 
EFE, thus it is possible that ultra energetic sources 
can also produce local superluminal expansions if 
they provide a sufficiently large value of E.

For the case of the cavity, we take the density  
ρ(t, r) at proper comoving cosmic time t0 to be given 
by:

				  

Here, ρ0 is a constant. 
Setting E(r) = 0 (that is, we are taking the particles 

of matter to be free), we obtain from equation (3):
 

Choosing the time coordinate such that R=r at t=0, 
the solution of the equation (7) for R is then:		

0 2 ( )R R E r t= +

9 If the mass M is zero, then the space is flat Minkowski space regardless of the choice of E(r).
10 We note here that regardless of the choice of E(r) the geometry inside the cavity is flat and static Minkowski space. The Riemann 
tensor is zero for any choice of E. Different choices of E only represent different coordinate systems for the cavity which in no way 
alter the geometry. Also, many choices of E will result in shell crossings and coordinate singularities. Such singularities have 
no physical significance. One particular choice of E(r) = r2/2 yields the coordinate parameterization of the Milne universe. The 
Milne model corresponds to a particular case of imaginary massless inertial observers (evanescent particles) moving in a spray 
of geodesics lying in the interior of the null cone. The metric in such coordinates has a time dependence that gives the illusion of 
expansion. But this is only due to the motion of the “observers” moving through static Minkowski space. Those trajectories would 
intersect the cavity wall and result in coordinate singularities. The point is that the geometry is flat and static and different 
coordinates cannot impose a different geometry on the manifold. The choice of E = 0 (corresponding to inertial observers at rest 
in the cavity) allows a single continuous coordinate system to match at the cavity wall. This coordinate system is simpler and 
provides an easier interpretation of solution. The fact that one can make a flat static solution appear to be expanding by change of 
coordinates actually serves to strengthen the Machian view. The space cannot be both expanding and not expanding! The answer 
is that the space in the cavity is not expanding, as I claimed in the main text. More exposition can be found in the Appendix C on 
the Milne model and comoving coordinates in other solutions with E(r) > 0.
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        .		
		

We can integrate eq. (5) to obtain:

				     .		
		

Since ρ(0, r) is piecewise constant, we can move it 
outside the integrand, integrate over each constant 
region, and obtain:

		
                                                                                   .	

Since
R(0, r) = r,

we obtain:

		                                    .	

Note that based on equation (6), the cavity wall 
at  R = r = r0is constant in time. This we expect since 
there is no gravitational pull on the inner surface of 
the wall.

The metric for the expanding matter outside the 
cavity is thus:

		                              .	

Now consider the solution for r < r0. There, M(r) = 0, 
and equation (8) becomes:

		             .				

So, the metric inside the expanding cavity reduces to:
        

                                               .		
Examining this solution, we see that inside the 

cavity the metric is static Minkowski space and 
space does not expand. This is one counterexample 
to the homogeneous fabric of space paradigm. We 
might consider how the expansion of space view 
was proposed. The claim of this author is that it is 
an artifact of comoving coordinates. Since comoving 

coordinates are constant for the cosmic dust, it gives 
the illusion that the dust is attached to the space, and 
thus since comoving coordinates are constant, it must 
be space that is expanding. The temptation to adopt 
this stems from the mistaken notion that special 
relativity trumps general relativity. It is the other 
way around, as the above analysis of the EFE shows. 
The reasoning behind the expanding space view 
is the claim that since nothing material can travel 
faster than light (meaning the value c from SR), then 
it must be the space that is expanding. The reason 
claimed for this is that space is not subject to the 
SR speed limit. However, proponents of expanding 
space provide no physical foundation for this ad hoc 
extraordinary claim. 

Note that if E > 0 then the cavity wall expands 
with constant speed 

The physical speed at which the wall recedes is 
(we have reinserted the speed of light for clarity and 
ease of interpretation):

                                      .

Since GR places no restriction on E (except that it 
is strictly greater than –1/2, as above), then for E > 0
the value of v is unbounded. So, we see that recourse 
to the special relativistic speed limit that nothing can 
travel faster than the speed-of-light except for space 
is suspect.  

In concluding this section, we note that once an 
incoming light ray reaches the cavity wall, it is no 
longer slowed by the receding mass, but travels through 
the cavity at the special relativistic speed c. We use 
this fact below in the comparison of travel time in a 
vacuum to the travel time in the globally homogeneous 
models. We also point out that the incoming photons 
traveling in the matter regions will exhibit redshifts 
while traveling through the matter regions (this 
follows from the standard redshift analysis), but there 
will be no more additional redshift as the photons 
traverse the empty region. We point out also that 
a more general cosmological solution consisting of 
numerous concentric regions of matter separated by 
voids will also exhibit a form of clumping of redshifts. 
These redshifts occur as the photons traverse the 
matter shells. Of course, more quantitative analysis is 
required to verify this conjecture.

This counterexample of an empty shell may not be 
entirely convincing to some. We now provide other 
counterexamples by analyzing in detail the method 
of coordinate construction in highly symmetric 
spacetimes11 and the issue of shell crossings in these 
cosmological solutions.
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11 By spacetime I mean the mathematical concept of a four-dimensional manifold. Metaphysically there is no such thing as 
spacetime as an eternal completed object.
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Shell Crossings in Cosmological Solutions
We return to an analysis of the manner in which 

the comoving coordinates are constructed and 
examine the restrictions that the metric functions 
must satisfy so that comoving coordinates remain 
valid. This analysis is based on the work of Hellaby 
and Lake (1985) that provides the conditions for no 
shell crossings in spherically symmetric cosmologies.

The analytical conditions for no shell crossings 
developed in Hellaby and Lake (1985) are relatively 
involved. The motivation for characterizing the 
conditions for no crossings is that shell crossings 
result in a violation of the conditions for the validity 
of comoving coordinates and that the coordinates are 
well behaved. We remind the reader that the basic 
conditions for coordinates are that they are real 
numbers and that the coordinates are 1–1 mappings 
in a neighborhood of a point in a manifold. If the 1–1 
mapping is violated, then they cease to represent 
unique points in the manifold.

However, at this point, we are not interested so 
much in what mathematical conditions are needed for 
maintaining mathematically well-behaved coordinate 
systems. Such conditions, we will see, are too 
restrictive and eliminate many real physical solutions. 
In fact, the models for which comoving coordinates are 
meaningful are the spherically symmetric solutions 
(homogeneous and inhomogeneous) of the EFE. It 
is easier to construct shell crossing violations by 
straightforward physical considerations.

Such mathematical violations show that the 
comoving coordinates only allow a rather restrictive 
set of solutions (those with well-behaved initial 
conditions that exclude collisions of matter) and 
eliminate a vast collection of physically realizable 
solutions. The general (and less idealized) physical 
case is shells of matter that can cross (or separate). 
Simple examples would be: (1) an exterior imploding 
shell meeting an interior exploding shell, or (2) a free 
exterior shell escaping to infinity while an interior 
bound sphere collapses to a singularity.

Comoving coordinates are constructed via labels 
that are attached to the particles of the gravitational 
model. If a particle is moving, then its label does not 
change.12 So then, while comoving coordinates might 
be useful before the collision, once the crossing occurs 
the comoving coordinates cease to be useful. Let’s 
consider the situation analytically by examining 
equations , and  above.

If we look at equation (2), we see that the function 
R(t, r) is the curvature function for a shell at comoving 
radius r at time t. The requirement for the coordinate 
system to be well behaved is that R is monotonically 
increasing as a function of the comoving coordinate 
r. If this is not the case then we have the case of
shell crossings since we would have a decrease in the
surface area of the shell when r increased, indicating
that a shell of a given r has collapsed to a sphere with
less surface area. As explained by Hellaby and Lake
the condition for incipient shell collapse is Rʹ = 0. This 
indicates a surface where an increase in comoving r
coordinate does not increase surface area. If we have
a solution for which Rʹ = 0 it is not a violation of the
physics. Rʹ = 0 is allowed by the field equations and
the chosen initial conditions.

The coordinate singularity at a shell crossing can 
be seen from equation (4). If Rʹ = 0 then the metric 
component grr = 0 indicating a degenerate metric.  
The singularity is also evident from the 4D volume 
element:

                                                   .

Indicating that the volume of the 4D coordinate 
extensions is 0. 

The above analysis alone should be sufficient to 
overturn the expansion of space paradigm. Reflection 
on the fact that the coordinates are attached to 
the particles, shows that shell crossings are shells 
of matter crossing each other. It is not a case of 
space crossing itself resulting in the development 
of topological defects in spacetime. It is merely an 
indication of conditions that invalidate the coordinate 
construction. Comoving coordinates become invalid 
when the shells of matter cross or separate.

That we can construct such violations in a 
physically meaningful way follows easily from the 
energy term in equation (3) above. As mentioned, 
E(r) is an arbitrary function of r.13 If E transitions 
at some value of the comoving r from a non-negative 
value to a negative value (at a larger value of r) we 
have the physically realizable solution. It represents 
an outgoing shell of matter surrounded by an 
imploding (bound) shell of matter. Clearly these 
shells will collide. The collision is a collision of matter 
not a folding of space back on itself.14 The collision is 

12 Reflection on the method of construction of comoving coordinates shows that the coordinates are assigned to the particles of the model. 
The coordinates track concrete particles, not abstract points in a mathematical space. As a result, it is particles in the cosmological fluid 
that provide the reference frame for the analysis. This is precisely in the spirit of  Mach’s relativistic thought and is another reason why the 
expansion of space does not bear up under scrutiny. We should also add that comoving coordinates are not necessary, merely convenient 
and a reflection of the Machian approach.
13 We also note the E(r) need not be continuous. We will utilize this below.
14 When the crossings occur, there will be single points with two (or more) values of the comoving coordinates. Such multivalued mappings 
violate the fundamental mathematical structure (a Lorentzian manifold) of the equations.  
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a case where comoving coordinates are invalid. This 
shows that the idea of expanding space from a naïve 
interpretation of an abstract coordinate system in a 
highly idealized cosmological model is an illusion and 
mistaken.

Expanding on the above, we describe two 
configurations of matter and energy distribution that 
result in breakdowns of the comoving coordinates. 
These configurations, which follow easily from a 
consideration of the energy domains and dynamics 
of gravitating systems, are: (1) a gravitationally 
bound sphere of homogeneous matter surrounded 
by a gravitationally free homogeneous distribution 
of matter, and (2) a gravitationally free sphere of 
homogeneous matter surrounded by a gravitationally 
bound homogeneous distribution of matter. In both of 
these scenarios the two regions are initially contiguous 
so that the comoving coordinate is continuous and the 
radial scale factor R is also continuous. We take the 
boundary of the two energy regions to be at comoving 
r = r0. The energy equation (3) above can be analyzed 
exactly as in the Newtonian case.15 Solving for the 
radial speed we get:

			
	            .

This yields that for E r) < 0 there is a maximum
radius for each comoving shell at radius r:

                                 .

The shell reaches it maximum expansion then 
collapses, such that       . For E(r) > 0 and positive 
initial shell speed, there is no maximum radius and 
all shells escape to infinity. 

In case (1), the inner sphere collapses, while 
the external matter expands. This results in shell 
separation or the creation of a gap (a void) between 
the two energy regions, yet there is no comoving 
coordinate that applies within the gap. In fact, the 

coordinate r0 is attached to both the surface of the 
collapsing shell, and also to the cavity wall of the 
expanding exterior matter. This scenario is depicted 
in fig. 5.

In case (2), the inner sphere expands to infinity, 
while the external matter collapses to a singularity. 
This solution of the EFE uses the positive branch 
of equation  for the inner sphere and the negative 
branch for the external matter. This results in shell 
crossings that develop at r = r0,  and a merging of the 
matter of the two energy regions. In the overlap there 
are two values of r attached to each point within 
in the overlap. The mass distribution and energy 
distribution functions are no longer valid there and 
consequently the radial factor R(t,r) is no longer a valid 
representation of the geometry in the overlap. There 
is no comoving coordinate that is valid within the 
merging region. In fact, the coordinate r0 is attached 
to both the surface of the expanding sphere, and to 
the cavity wall of the collapsing exterior matter. This 
scenario is depicted in fig. 6.

Homogeneous FLRW Cosmologies
We return now to the analysis of the large light 

travel times in a homogeneous expanding universe.
The homogeneous model can be obtained from the 
inhomogeneous model by restricting the density to 
a function of time only. In this case the radial scale 
simplifies to:

With this simplification, the global homogeneous 
FLRW solution in comoving coordinates becomes:

		
                                                                      .

The function fk depends on the curvature index 
k, which in turn is determined by the energy of the 
particles.  

2 ( ) 2 ( )M rR E r
R

= ± + (15)
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( )( )

( )
M rR r
E r
−

=

 0R <

BA

Fig. 5. Homogeneous matter distribution with two different energy regions. A. Initial condition. Bound interior and 
free exterior. B. Configuration as the system evolves. The interior collapses and exterior expands creating an empty 
void with no coordinates assigned.
15 It is worth mentioning that equation (3) is, in fact, Newtonian and this accounts for the fact that mass can travel globally 
superluminal, greater than c, yet travel locally slower than light. This latter feature is entirely relativistic.
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A B

Fig. 6. Homogeneous matter distribution with two different energy regions. A. Initial condition. Free interior and 
bound exterior. B. Configuration as the system evolves. The interior expands and exterior collapses creating a 
merger of the matter with no unique coordinates assigned.

Recall that K = 1 is the bound solution with positive 
curvature, K = 0 is the open and flat solution, and 
K = –1 is the open solution with negative curvature.  

The free-falling particles are governed by the 
geodesic equations. For the homogeneous models 
these equations are:

For simplicity, in the subsequent analysis, we 
will consider only radial motion. Thus, the angular 
velocities are 0, and we have the following two 
equations for the trajectory in (t,r):

	         .

Inertial Dragging in Homogeneous 
FLRW cosmologies

In this section we illustrate by quantitative 
analysis that particles with peculiar velocities 
undergo acceleration relative to the comoving 
Hubble flow.16 This is expected from Mach’s principle 
since the global Hubble flow of free-falling matter 
is the cosmic inertial frame. It is important to note 
that the particles with peculiar velocities are also in 
free fall, yet their motion is altered to approach the 
Hubble flow’s local rest frame. We explain this as 
due to the cosmic time-dependent gravitational field 

which manifests itself as a time-dependent constant 
curvature.

The equation for r yields the constant of the motion:

                   .				

For particles with constant r (that is, the Hubble 
flow, or zero peculiar velocity) a = 0. For a particle 
with a non-zero peculiar velocity given by:

                      ,

we get the first indication of Machian inertial 
dragging since:

                                     .			

This shows that the peculiar velocity of a particle 
changes inversely to the scale of the universe. In 
particular for the open expanding solutions for 
which a approaches infinity, the peculiar velocity 
approaches zero. Thus, peculiar velocities are 
damped and the particle motion will asymptotically 
converge to the Hubble flow.

To aid in the solution of the geodesic equations we 
use the metric normalization of the four-velocity to 
produce the quadrature (for radial motion):

Thus

Substituting into  gives another expression for the 
peculiar velocity:
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16 Peebles (1993, 95) briefly treats damping of peculiar velocities using a small velocity approximation. The results in this paper do 
not use any approximations.
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Particle Dynamics in the Flat FLRW Solution
For simplicity in the following analysis, we 

restrict attention to the flat solution with zero 
curvature, K = 0. This model is also more in line with 
current assessment of the large scale geometry of 
the universe. For the flat solution, we have (see for 
example, Misner, Thorne, and Wheeler 1973):

               .

We choose r to be a physical distance, so that the 
scale factor a is dimensionless.

Solution of the Friedman equation for spatially 
homogenous matter density, gives:

  
  .			

		
The constants of integration have been chosen so 

that the singularity occurs at time 0 and such that 
the scale factor is unity at a present putative time of 
1/k. This choice means that the constant comoving 
coordinates are the proper distances of objects at 
the current time (epoch). Note that ρ0 is the cosmic 
density at the current epoch, when a(τ) = 1.

To see the effect of Machian dragging in detail, we 
expand the derivative in equation :

                                            .

Substituting equation (18) gives:

                                                        .

This shows that test particles with peculiar 
velocities (a ≠ 0) experience kinematic acceleration 
relative to the motion of the Hubble flow. However, 
such particles experience no dynamic acceleration 
since they, too, are in free fall and inertial.  
Accelerometers would register zero acceleration.

As time increases, the second term approaches 
zero, since the derivative of the scale factor a(t) is:

                      .

Therefore, the motion of the object in comoving 
coordinates approaches

                      , and

These quantitative features were illustrated in fig. 
4.

Light Travel Time in Homogeneous 
FLRW Cosmologies and Cavity Models

In this section we derive the time of flight of 
photons in the open FLRW model and compare the 
time to the time to travel the same distance in a cavity 
(vacuum). We choose the open solution since it more 
closely matches current observations of a nearly flat 
universe and the results are easier to interpret than 
using the standard model.

Photon trajectories are determined by ds2 = 0, 
which is:  

               .			
 

The plus sign is for outgoing light and the negative 
sign is for incoming light.  

Consider an incoming photon emitted at time τ0 
from a distant source at a comoving distance r0 and 
arriving at r = 0 at time τ. Its trajectory is obtained by 
integrating equation 22:

Yielding:

After some algebra, this can be solved for the 
travel time, τ – τ0 

            
                                       .		

Note that r0 is the current distance at epoch; it 
is not the physical distance of the source at time of 
emission. The physical distance at time of emission 
is:

            .

Using this to eliminate r0 we obtain:

                                                         . 

Note that the leading term is independent of time 
of emission. It is the time a photon would take to 
traverse a void of size D0. Therefore the ratio, R, of 
the FLRW time of flight to the cavity (vacuum) time 
of flight is:

		
                                                  .
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Finally, introducing the notation
			

                                     .

The two expressions in equation  will allow us 
to express ζ in terms time of emission and proper 
distance at emission or comoving distance.

Using equation (25) then yields the simple formula 
for the ratio of the homogeneous universe travel time 
to the vacuum travel time:

 .			

This shows that the travel time increases 
quadratically as ζ. Since ζ increases with proper (or 
comoving) distance and with decreasing times of 
emission, we see that the travel time from distant 
objects at early times is strongly slowed by the 
homogeneous expanding matter of the Hubble flow, 
thus the reciprocal of equation (26) gives a formula 
for the reduced travel time in cavities.

Another useful quantity is the effective speed of 
light. We note from equation (24) that the reciprocal 
of R is the total proper distance (at emission) divided 
by the time of flight, which is the effective speed of 
light.

In the next section we analyze the results of this 
analysis.

Before we do so, we present in fig. 7 an illustration 
of photon trajectories in the open FLRW cosmology 
using physical distance as the radial coordinate, 
rather than the comoving distance. In Appendix 
B we derive the expression for the metric in terms 
of physical distance. This figure’s illustration of 
superluminal physical speeds may be the most 
important in this paper. The figure plots the proper 

(physical) distance of the photon from an observer 
as a function of cosmic time.  Recall that the proper 
distance D at time t is related to the comoving 
distance r via:

                           .

Blue lines are incoming photons and red lines are 
outgoing photons. Note that early in the expansion, 
incoming photons are actually receding from the 
observer (proper distance is increasing). This is due 
to the inertial dragging of the light by the time-
dependent gravitational field of the Hubble flow. The 
photons reach an apogee and then finally approach 
and reach the observer at the origin. For example, 
the light trajectory that arrives at the earth at time 
9 Gy receded to an apogee of 4 Gly at approximately 
2.5 Gy. This delay in approaching the observer is due 
to the Machian effect. There would be no delay in the 
absence of the Hubble flow. Note that the diagram 
shows that the trajectories of the massive particles 
(indicated by the black lines) always lie inside the 
null cone. This is in keeping with our remark that 
even though the massive particles are globally 
traveling with a speed greater than c they do not 
travel faster than the local light. Note also that the 
null cones (and the matter trajectories) are tilted 
more severely toward increasing distance as time 
approaches zero—another indication of the global 
speed of the matter traveling faster than the special 
relativistic value of c. One final comment: note that 
near the event at distance 2 Gly at time 12 Gy, the 
light speed is c (as indicated by the 45° slopes of the 
incoming and outgoing light trajectories). In the near 
neighborhood, and at late times (when the matter 
speed is becoming smaller) the amount of inertial 
dragging of the light has decreased significantly.

Results
In the following we present the results via several 

plots that give: (1) time of flight as a function of both 
proper distance and comoving distance; (2) ratio 
of homogeneous time of flight to the cavity time of 
flight; (3) effective speed of light in the open FLRW 
cosmologies.  

We plot the ratio of the time of flight 
of incoming light given in equation  for 
representative values of proper distance and 
time of emission. Rather than using the currently 
estimated density at epoch of ρ0 = 9.9 × 10–27kg/m3 

obtained from the standard cosmology, we will 
select the density for the open FLRW such that the 
age computed fits the current old universe value 
of 13.8 Gyr. This gives ρ0 = 4.2 × 10–27kg/m3. For 
comparison we will plot the results for light travel  
within a young age cosmology and the old age 
cosmology. Also, for each case, we plotted several 

Fig. 7. Trajectories of incoming (blue) and outgoing 
(red) light rays in open FLRW model.  Black lines are 
trajectories of the Hubble flow.
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measures of the light travel time as a function of 
distance (both comoving and proper distance) and 
emission time. When interpreting the graphs, it is 
important to remember that the comoving distance 
is the theoretical distance according to the model 
where the object would be today. In the graphs, the 
proper distance is the distance of the object at time 
of emission. The latter provides an easier calculation 
of the effective speed of light as the proper distance 
at emission divided by the travel time. The measures 
we selected are: (1) total light travel time; (2) ratio of 
travel time in matter to that through a cavity of the 
same distance; and (3) the effective global speed of 
light (compared with c, the speed through a cavity).

For each of these measures we note the following 
related results. The total light travel time traveling 
through matter is always greater than the cavity 
time. Thus, the ratio mentioned above is always 
greater than 1; and, finally, the effective global speed 
of light in matter is always less than c.

Results for a distance of up to 1 Mly are graphed 
in fig. 8 using emission times within a YAC time 
scale. The reduction of time of flight is shown for 
four emission times. The travel time in a void is 
reduced by a factor on the order of 104. This is 
significant. However, it should be noted that the 
time to travel 1 Mly in the vacuum is still 1 million 
years.17 The figure shows that the time for light 
emitted 1,000 years after creation to traverse the 
1 Mly distance in a homogeneous matter distribution 

17 It is to be noted that this statement is about light travel in the cavity which is flat Minkowski space. It is therefore a tautology 
that light takes a million years to travel a million light years. What this means for YAC is that we are constrained to say the 
currently observable universe has a diameter on the order of 20,000 light years. These remarks are assuming that c is not a 
function of time.
18 This observation may cause some reservations. However, we note that the reduction in time is a significant push back on secular 
estimates of the age of the universe and the time for light to traverse large distances. As an example, consider the distant object 
GN-z11, that was mentioned in the introduction. The Machian dragging effect of the expanding matter results in 13.4 Gy for the 
light to travel just 2.7 Gly, which is five times greater than the time to traverse a void of the same size. Again, this emphasizes that 
the Machian dragging of light is detrimental to short light travel times.

Fig. 8. Ration of light travel time in open FLRW 
cosmology to a vacuum cavity.
would be approximately 35 billion years. The main 
point is that though cavities in themselves do not 
bridge the entire LTTP they do significantly reduce 
travel time compared to that predicted by the 
globally homogeneous models.18 Thus, exploration 
of cosmological models with many voids should be a 
fruitful line of research.

In fig. 9, the light travel time in the homogeneous 
open FLRW cosmology is plotted as a function of 
proper distance (A) and comoving distance (B). In fig. 
9(A), travel time for a proper distance at emission 
clearly shows that the expansion of matter results in 

A B

Fig. 9. Light travel time in open FLRW cosmology as function of emission time and proper distance (A) and comoving 
distance (B).
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travel times much greater than the equivalent time 
through a void (indicated by the lowermost black 
line). This result is also illustrated in fig. 10 which 
plots the ratio of light travel time in the homogeneous 
matter cosmology to that in a void.  The ratio is 
always greater than 1.

In fig. 11, the effective speed of light, defined as 
total proper distance traveled from the source to the 
origin divided by the total time, is plotted for several 
emission times and comoving distances. The figure 
shows that the effective speed of light is much less than 
the vacuum local speed of light of special relativity 
(speeds are normalized to c = 1). The graph shows that 
the effective global speed decreases as proper distance 
increases and also for earlier emission times. This 
is understandable as the speed of the Hubble flow 
increases for earlier times of emission (the expansion 
of the matter is more rapid in the early stages of the 
expansion before slowing due to gravitational pull).  

Conclusions
We have shown that the cosmologies with 

homogeneous expanding matter lead to light travel 
times that are significantly greater than the travel 
time traversing cavities. A main point is that space 
in cavities does not expand and that empty space 
cannot impede light transit to the earth. Thus, 
inhomogeneous cosmologies with large voids will 
have significantly less light travel times than those 
predicted by the homogeneous cosmological models, 
such as the standard model. We also examined how 
Mach’s principle provides a satisfying explanation 
of the physical effects in a way consistent with 
the principles of GR. We quantitatively provided 
counterexamples to the expansion of space paradigm 
via the inhomogeneous cavity cosmology and the 
Hellaby and Lake analysis of the general breakdown 
of comoving coordinates. Another important point 
is that “superluminal” global speeds are adequately 

A B

Fig. 10. Ratio of speed of light in homogeneous open FLRW model to speed in vacuum.

A B

Fig. 11. Effective global speed of light as function of proper distance (A) and comoving distance (B) and time of 
emission.
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explained within GR without recourse to the space 
expansion argument. We have shown that an appeal 
to the SR speed limit for global speeds in GR is 
misguided. GR is the covering theory of SR and SR is 
to be interpreted in light of GR, not the reverse. We 
demonstrated that nothing in GR precludes global 
velocities greater than the local speed of light.  

In light of these considerations, we believe 
the expanding fabric of spacetime concept (given 
that it means empty space can expand) should be 
abandoned by YAC cosmologists; it is inimical to 
young age creationism as it results in longer light 
travel times even in voids. This means that the 
use of voids should decrease the light travel times 
predicted by the inhomogeneous model I presented 
in Dennis (2018). This is because my 2018 model still 
had regions of expanding matter in the neighborhood 
of the earth (though of lower mass density than the 
remote universe). I hope to explore these refinements 
and an analysis of reduced light travel time in my 
inhomogeneous model in a future paper.  

Acknowledgments 
The author thanks John Byl, Danny Faulkner, 

Robert Walsh, and an anonymous reviewer for their 
comments and discussions that have helped improve 
this paper. 

References
Barbour, Julian and Herbert Pfister. 1995. Mach’s Principle: 

From Newton’s Bucket to Quantum Gravity. Basel, 
Switzerland: Birkhäuser.

Bondi, H. 1947. “Spherically Symmetrical Models in General 
Relativity.” Monthly Notices of the Royal Astronomical 
Society 107, nos. 5–6 (December): 410–425.

Davis, Tamara M. and Charley Lineweaver. 2004. “Expanding 
Confusion: Common Misconceptions of Cosmological 
Horizons and the Superluminal Expansion of the Universe.” 
Publications of the Astronomical Society of Australia 21, 
no. 1 (5 March): 97–109. 

Dennis, Phillip W. 2018. “Consistent Young Earth Relativistic 
Cosmology.” In Proceedings of the Eighth International 
Conference on Creationism, edited by J. H. Whitmore, 14–
35. Pittsburgh, Pennsylvania: Creation Science Fellowship.

Frolov, Valeri P., and Igor D. Novikov. 1998. Black Hole 
Physics: Basic Concepts and New Developments. Dordrecht, 
Netherlands: Kluwer Academic Publishers.

Gullstrand, Allvar. 1922. “Allgemeine Lösung des 
Statischen Einkörperproblems in der Einsteinschen 
Gravitationstheorie.” Arkiv för Matematik, Astronomi och 
Fysik 16, no. 8: 1–15.

Hellaby, Charles, and Kayll Lake. 1985. “Shell Crossings and 
the Tolman Model.” The Astrophysical Journal 290 (March 
15): 381–387. 

Johnson, Bryan M. 2018. “Towards a Young Universe 
Cosmology.” In Proceedings of the Eighth International 
Conference on Creationism, edited by John H. Whitmore, 
46–51. Pittsburgh, Pennsylvania: Creation Science 
Fellowship. 

Krasiński, Andrzej. 1997. Inhomogeneous Cosmological 
Models. Cambridge, United Kingdom: Cambridge 
University Press.

Mach, Ernst. 1989. The Science of Mechanics. 6th edition. 
Chicago, Illinois: Open Court Publishing.  

Misner, Charles W., Kip S. Thorne, and John Archibald 
Wheeler. 1973. Gravitation. San Francisco, California: 
W. H. Freeman.

Mukhanov, Viatcheslav. 2005. Physical Foundations of 
Cosmology. Cambridge, United Kingdom: Cambridge 
University Press.

Nielsen, N. K., 2022. “On the Origin of the Gullstrand–Painlevé 
Coordinates.” The European Physical Journal H 47, no. 1 (9 
May), article 6.

Painlevé, Paul., 1921. “La Mécanique Classique et la Theórie 
de Relativité.” Comptes Rendus Academie des Sciences 173: 
677–680.

Peacock, John A. 1999. Cosmological Physics. Cambridge, 
United Kingdom: Cambridge University Press.

Peebles, P. J. E., 1993. Principles of Physical Cosmology. 
Princeton, New Jersey: Princeton University Press.

Sachs, M. and A. R. Roy. 2003. Mach’s Principle and the Origin 
of Inertia. Montréal, Québec: Apeiron.

Appendix A. 
Derivation of Local and Global Speed-of-Light

There are many representations of the FLRW metric 
in the literature (see, for example, Krasiński 1997). For our 
derivation we write the metric of the FLRW model with scale 
factor a(t) as a function of cosmic time t as:

                                                                                       .
The distance D of an object at constant comoving coordinate 

at cosmic time t is obtained by integrating the proper spatial 
interval within a t = constant surface along a radial direction.

   
                                                                     .

Taking the time derivative, the global speed of the Hubble 
flow at that point is:

 .

It is well known that this speed can be larger than the local 
speed of light value c of special relativity.

For photons, r is not constant. In fact for photons we have:

So 

Thus, the global speed of incoming and outging light is (+ for 
outgoing; – for incoming):

                                                                                            .	

Thus, subtracting the speed of the Hubble flow, that 
all matter exhibits, yields the local speed of light: 

 clocal = vlight – H0D = ±c

 2 2 2 2 2 2 2( ) ( )kds c dt a t dr f r d = − + + Ω 

0 0

( , ) ( ) ( )
r r

D t r ds a t dr a t r= = =∫ ∫

 
0

( , ) ( )( )
( )H

dD t r a tv a t r D H D
dt a t

≡ = = =




 
0Hv H D=

 2 2 2 2 2( ) 0ds c dt a t dr= − + =

( )
dr c
dt a t

= ±

0
( , ) ( ) ( )light

dD t rv a t r a t r H D c
dt

≡ = ± = ±  (27)
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Equation (28) is the metric that corresponds to fig. 7 of the 
main text. An interesting aspect of this metric is that the 3D 
metric of the spatial geometry,

                                           ,
at each instant is static and Euclidean, thus reinforcing the 
view that space is not expanding.  

We can use the dependence of H(t) on the matter density to 
transform equation (28) to an interesting form. 

From the EFE we have19 

                                     .

This gives:

                                                                            .

In which M(t) is the amount of mass inside a sphere of 
radius ρ at time t.

Substituting into equation (28) yields:

                                                                             

                                                                                         .

This is the Gullstrand-Painlevé coordinate form of the 
Schwarzschild solution with a time dependent mass.20 The 
function M(t, p) is the mass inside of fixed radius at time t.  
The mass depends on time since as the matter expands in the 
static spatial geometry the amount of mass inside a sphere 
decreases.  

We see that for an observer at fixed distance the geometry 
looks like a Schwarzschild solution with time dependent 
mass.  A further interesting aspect is that an observer at 
fixed distance is not a geodesic, and not an inertial observer.  
Thus, to maintain the fixed distance, the observer must apply 
an acceleration. This acceleration is needed to counteract the 
Machian drag produced by the inertial Hubble flow.  Thus, this 
form of the solution further supports the Machian viewpoint 
of this paper.

2 2 2 2 22 ( , ) 2 ( , )1 2M t M tds dt dtd d dρ ρ ρ ρ ρ
ρ ρ

 
= − − − + + Ω 

 

2 2 2 2 22 ( , ) 2 ( , )1 2M t M tds dt dtd d dρ ρ ρ ρ ρ
ρ ρ

 
= − − − + + Ω 

 

Appendix B. 
Derivation of the Metric in Physical Coordinates

We derive the metric for the open FLRW solution in terms 
of the physical distance instead of the comoving coordinates.  

From equation (4) the physical distance ρ from the origin 
is given by:

                                      .

For the open FLRW case (with E(r) = 0) we have:

                               .
Thus, the coordinate transform to physical distance is:

                     .
Taking the differential yields

                                                . 
Solving for dr in terms of dt and d ρ and substituting in 

equation (20) yields:

                                                                                         .	
	  
Here,              

is the Hubble constant. In this case we see that the factor

                              ,		
represents a time dependent gravitational field. This factor 
shows that there is a Hubble horizon at distance (inserting the 
speed of light) :

                          .

This is the maximum distance at which the physical 
coordinates constitute a valid coordinate system.

Solving equation (28) for the photon trajectories (ds = 0), 
yields the global physical speed of light (with respect to the 
clock at the origin):

                                 .	
This is the global physical speed of light as also derived in 

Appendix A. The first term is the dragging of the light by the 
expanding matter and the second term is the local (peculiar) 
speed of light. Note that objects beyond the Hubble horizon 
cannot be seen since, from equation (30), all light has positive 
recession speeds, and never reaches the origin.

 ( , )rrg t r drρ = ∫
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 ( )2 2 2 2 2 2 21 ( ) 2 ( )ds H t dt H t dtd d dρ ρ ρ ρ ρ= − − − + + Ω

( )2 2 2 2 2 2 21 ( ) 2 ( )ds H t dt H t dtd d dρ ρ ρ ρ ρ= − − − + + Ω
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a tH t
a t
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

 2 2( )H t ρΦ =

 

( )H
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H t
ρ =

 ( )H t cρ ρ= ±

(28)

(29)

(30)

 2 2 2 2ds d dρ ρ= + Ω

19 We added the subscript to the mass density to distinguish it from the proper distance ρ.
20 Original published papers are Gullstrand (1922) and Painlevé (1921). See Nielsen (2022) for an English translation of the original 
papers.
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3
m tH t πρ

=
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ρ
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Appendix C. 
The Milne Model, Other Cavity Coordinates Derived From 
E>0 in the Interior, and Other Comoving Coordinates

In the main text I chose a particular choice of E(r) = 0 since it 
was mathematically convenient and manifested the geometry 
of Minkowski spacetime in the interior. This choice was in 
part motivated by the physical consideration that there are no 
carriers of energy in the cavity. Also, such a choice provided 
a continuous coordinate system that joined smoothly to the 
static cavity wall. This is illustrated in fig. 12. As the figure 
shows, the timelike worldlines of the interior test particles 
correspond to particles at rest inside the cavity. Inside the 
cavity, r measures the distance in the cavity from the origin. 
That distance is time independent. Clearly, the cavity is not 
expanding. Below we will choose the Milne coordinates that 

seem to imply the interior is non-static and that space is 
expanding. At this point, we merely remark that the interior 
space cannot be both expanding and not expanding at the same 
time depending on the choice of coordinates. Coordinates per 
se are not imbued with metaphysical powers to warp space.

However, for completeness, in this appendix we discuss the 
cases of other choices of the energy constant E(r) in the cavity 
interior. We show that such choices do not alter the conclusions 
of the main text. Some choices result in discontinuous 
coordinates that serve to strengthen the Machian viewpoint. 

As we noted, the geometry of the cavity interior is 
intrinsically Minkowski spacetime, which is flat and static. 
Geometrically it is symmetric under the 10 parameter 
Poincare group. Choosing different functional forms for E only 
results in change of coordinates of Minkowski spacetime. We 
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will show that such coordinates cannot alter the symmetries 
of the interior under the Poincare group. This fact should be 
obvious since the Riemann tensor in the interior is identically 
zero. By the linear transformation law for tensors, under a 
change of coordinates, a zero tensor remains zero.

The different functional forms correspond to massless 
test particles which provide an infinite variety of comoving 
coordinates. Many of these are useless while others yield an 
illusion of a non-static interior. One such case is the Milne 
model which we now discuss.

The Milne Model
First, for the cavity interior we consider the choice: 

                          .			

An immediate observation is that this form is discontinuous 
at the static cavity wall   which is the interface to the exterior 
where I took the matter to be expanding according to the 
gravitational energy integral with E=0, viz:

                                                        .

We note that there is no requirement that E be continuous, 
however such discontinuities result in the shell crossings 
explained in the main text. Such shell crossings in comoving 
coordinates in the case of fictitious test particles in the interior 
have no physical meaning. They merely point to the breakdown 
of the coordinates (in this case the Milne coordinates) at the 
boundary. We will show this to be the case.

For the interior, with M(r) = 0 and equation (32), we obtain:

                                          .

This yields the solution:

                  .

(We have dropped a constant of integration that merely 
specifies the time at which R = 0). The positive value yields 

an expanding Milne model, the negative sign an imploding 
Milne model. We consider the positive case. Substituting into 
equation (4) gives the local coordinate form of the interior 
metric:

                                                                                    .

At this point we relabel the coordinates so that we do 
not inadvertently conflate them with the Lorentz frame 
coordinates  in Minkowski space. The geometric significance 
has changed from the t and r used for the E = 0 case. This is 
evident since the coefficient of the radial term shows that r 
is no longer a physical distance. For the new coordinates we 
make the replacements t → τ and r → ρ. This gives:

                                                                           .

This appears to make the interior non-static. But the 
geometry in the interior is still flat static Minkowski space.

We transform to a new radial coordinate:

                       .

This gives:

                                                                                 .

This solution is shown in fig. 13. We first note that the Milne 
particles are a spherical spray of fictional particles emanating 
from the origin at time t = 0 and expanding in time with 
constant speed. These are geodesics of Minkowski space. Each 
fictional particle has a speed that mimics a Hubble expansion, 
In the figure we show that the coordinates constructed via the 
Milne particles only cover that portion of Minkowski space in 
the interior of the future light cone. The figure also illustrates 
the shell crossing which occurs at the event labeled C (the 
explosion). This explosion is a collision of a fictitious particle 
with the cavity wall, not a physical shell crossing as in the main 
text. Consequently, it is a mere mathematical singularity. 
At that collision point the external and internal coordinates 

Fig. 12. Illustration of the continuous coordinates of the cavity model consisting of exterior free matter escaping to 
infinity. Figure shows intertial “test particle” trajectories in the interior. Such “particles” are not physical they only 
provide a coordinate chart for the interior Minkowski spacetime.
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represent two different coordinate charts. We emphasize 
again that the shell crossings discussed in the main text were 
crossings of actual matter, represented by turning points in 
the mathematical scale factor of the comoving coordinates that 
track the matter.

This model of expanding observers in the Milne universe 
is nothing more than a different way to construct a coordinate 
system that covers a subset of Minkowski space within the cavity 
(namely the interior of the future light cone). These coordinates 
mimic a non-static and expanding empty universe which never 
slows down as there is no gravity to slow it down.  It is nothing 
more than a spray of geodesics in Minkowski space (all traveling 
in constant speed straight lines with speed increasing according 
to a Hubble law). The figure shows the limited coverage of 
Minkowski space, viz. the region within the cavity and outside 
of the future null cone (the space like region relative to the origin 
labeled S in fig. 13) is not covered by the Milne coordinates. 
These moving fictional particles in Minkowski space (with their 
associated coordinates) can no more create a time dependent 
spacetime than various alternate coordinate systems for the 
surface of the earth can make the earth flat.

We can transform back to the E = 0 Lorentz frame from 
Milne comoving coordinates via:21

.

From this we determine that the speed of the test particles 
at comoving coordinate χ is:

                               .

We now prove that any choice of E(r) in an empty cavity 
yields the geometry of Minkowski as in special relativity (the 
theory with zero gravity).

General Proofs
As mentioned, different choices of E in regions for which 

M(r) is zero, always produce solutions that are the Minkowski 
geometry. The proof in general is tedious if calculated by hand 
but it is a straightforward computation of the Riemann tensor. 
Use of a symbolic computation program makes the task a 
breeze.

From equations (3) and (4), with M(r) = 0, gives the solution:

                                                            .

E is an arbitrary function of r. The general expression for 
R is then:

                                                    .

The constants of integration have been chosen so that 
R = R0 at t = t0 .

From equation (33) we can compute the Riemann tensor. 
The answer is that Riemann = 0 is independent of the function 
E(r). Thus, the calculation of Riemann proves that the interior 
is flat and static Minkowksi space showing that E(r) only 
specifies a coordinate system when M = 0. One cannot make 
a static space into a non-static one and claim space expansion 
by a choice of comoving coordinates attached to imaginary 
particles in expanding motions through empty space.

A final general proof follows from Birkhoff’s theorem for the 
uniqueness of the geometry of a static spherically symmetric 
empty spacetime. That solution in Schwarzschild coordinates 
is the familiar expression:

.

Fig. 13. Illustration of use of Milne coordinates in the interior cavity. The test particles (which have no physical 
significance to the cavity solution) only provide a different set of coordinates for Minkowski space. The interior 
geometry is still flat and static. The time dependence is only due to the motion of the test particles. The interior 
Minkowski space is not expanding.
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21 Peebles (1993, 199) stating that the Milne cosmology is the flat (static) spacetime of special relativity, poses this as an exercise 
for the reader, thusly: “It is an interesting exercise to show how one knows (from the theorems of Birkhoff and of Robertson and 
Walker) that this must be a coordinate labeling of flat spacetime, and to find the coordinate transformation that brings it to the 
standard Minkowskian form.” That transform is given above.
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For a region with no central mass M = 0 yielding:

                                                       .

This is Minkowski spacetime, which is the unique geometry 
of a spherical region devoid of matter.

The Expanding Cavity Solution
The reader may wonder how an expanding cavity affects 

the above analysis. The answer is that the above arguments 
are all local, they depend only on the local density of matter 
at a location. The result is that the expanding cavity wall does 
not alter the analysis. In the cavity the local density of matter 
inside a sphere of radius r is zero. It does not matter if the 
exterior cavity wall is expanding with E > 0. The geometry in 
the cavity is Minkowski spacetime. The Riemann tensor is 
zero.

Other Comoving Coordinates:  
Novikov Coordinates for the Schwarzschild Solution

Another example of comoving coordinates that seems 
to impart time dependence to static solutions is the case of 
Novikov coordinates. The detailed mathematics of Novikov 
coordinates can be found in Misner, Thorne, and Wheeler 
(1971, 826–827) and Frolov and Novikov (1998, 646–647).

Novikov coordinates correspond to freely falling test 
particles in the Schwarzschild geometry. In fact, the 
Schwarzschild solution in Novikov coordinates can be obtained 
from the LTB equations (equations [3]–[5]) in the main text, 
using the following expressions:

These choices yield the time dependent metric tensor in 
terms of the parametric equations:

Eliminating the cycloidal time parameter η then gives the 
implicit expression for R(t, r):

                      .

It is well known that Birkhoff’s theorem yields the result 
that the Schwarzschild geometry is the unique static geometry 
for a spherically symmetry gravitating source of mass M. 
The important point in this example is that the freely falling 
representation of Novikov coordinates results in a time 
dependent metric though the geometry itself is static. It is not 
surprising that infalling test particles see a time dependent 
metric. The test particles are moving through a spatially 
varying curvature and thus see a temporally varying curvature 
as they fall.22 Such time dependence is not surprising and 
unremarkable in itself. The point is that time dependence in a 
coordinate representation of the metric tensor does not imply 
a non-static metric.23

Conclusion and Summary
The above analysis shows that the spacetime in the interior 

of an empty spherical cavity is static and does not expand. 
This follows from: (1) the computation of the Riemann tensor 
in the interior for arbitrary “energy” functions, E(r). For the 
empty space inside the cavity the choice of E(r) does not alter 
the geometry; (2) Birkhoff’s theorem for the uniqueness of the 
geometry of a  spherically symmetric spacetime. The unique 
Minkowskian geometry is obtained by setting M = 0 in the 
Schwarzschild metric formula.

In conclusion, this analysis shows that the expansion 
phenomenon only occurs in regions where there is matter. In 
those regions, the expansion is an expansion of matter, not 
space, and the gravitational field of the expanding matter 
exerts a dragging effect on matter as discussed in the main 
text.
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22 Reflection on the Eulerian derivative in classical physics illustrates the apparent time dependence of a static and spatially
varying function. For example, if a function f depends only on  then                               since the partial with respect
to t is 0.
23 A possible terminological confusion for those unfamiliar with the basics of modern differential geometry is that the intrinsic 
metric tensor, g, is a coordinate independent geometric object that describes the geometry of a space. The old-style local component 
notation in terms of coordinates and transformations to other coordinate systems in no way alter the geometry. Yet, to this day 
some believe that such transformations create different metrics in the sense of geometries. This mistaken notion stems from 
the shorthand practice of referring to particular expressions such as:  ds2, ds2 = gabdxadxb, or the metric components gab via the 
shorthand term “metric.” However, technically, the formula ds2 = gabdxadxb is an expression for the invariant interval in terms of a 
specific set of local (and arbitrary) coordinates dxa. In different coordinates the metric tensor components gab will look different and 
the algebraic expression for ds2 will look different, but ds2 embodies the results of the intrinsic metric (or geometry) independent 
of coordinates. Different functional forms of the metric tensor can represent the same geometry. Stated in geometric terms the 
invariant spacetime interval along a geodesic between two points is independent of the coordinates. An analogy can be made 
with cartography, map projections and the geometry of the earth’s surface (as an idealized sphere). Different map projections 
provide different mathematical representations of the surface of the earth. For example, the expression for ds2 in the coordinates 
of a Mercator projection look different from the expression in a polar stereographic projection. But map projections cannot alter 
the earth’s intrinsic geometry. The mistaken claim that different looking expressions for ds2 (of the same underlying space) are 
different geometries is to conflate coordinates (map projections) with the intrinsic geometry of the space (surface of the earth). 
Claiming that the Milne model is a different geometry than Minkowski space is incorrect. 

 x  / /df dt f t v f v f= ∂ ∂ + ⋅∇ = ⋅∇
 
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