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Abstract 
Wood and co-workers (Robinson and Cavanaugh, 1998; Wood 2002, 2005a) have devised and 

promoted the application of some statistical methods to the taxonomy of various biological organisms. 
Principally, they rely on a technique described as Baraminic Distance Correlation (BDC) or a version of 
multi-dimensional scaling (BDISTMDS). This paper will argue that these methods are based on a shaky 
understanding of statistical principles, and that their use ought to be abandoned. 

Introduction 
Whereas Darwinian evolution assumes a 

monophyletic relationship between all life, as  
depicted in his famous “tree of life,” creationists 
interpret the differences between biological 
organisms in terms of original baramins, or “created 
kinds,” followed by a subsequent polyphyletic 
development. Statistical baraminology (SB) assumes 
it can uncover the discontinuities between groups of 
known taxa, which may be a route to determining 
the original kinds. To identify relationships between 
taxa, we can enumerate a set of characters that are 
shared by subsets of the particular organisms being 
studied. From a statistical viewpoint, we have a set 
of data comprising measurements of p variables (also 
called characters or attributes in the literature) for 
each of n objects (taxa) {xi }, where xi is a row vector  
(xi1, …, x

ip
). We can denote the data set by

The first step of the BDC procedure is then to 
define a n-dimensional dissimilarity matrix 

where the notation dij is shorthand for a function 
d(xi,xj) that measures the dissimilarity or “distance” 
between taxon i (xi) and taxon j (xj). Note that in 
practice the distances are nearly always symmetric 
(i.e., dij = dji), so only the upper or lower triangle of 
this matrix needs to be stored.

The BDC technique 
Baraminic Distance Correlation (BDC) typically 

uses a distance metric that simply counts the 
number of “matches” between every pair of taxa 
across all characters1 and subtracts this from the 
maximum number of matches possible (p). Indeed, 
this is sometimes called a simple matching distance. 
Mathematically, if we have two taxa x and y this is 
equivalent to the formula 

or, equivalently

where the notation [expr] denotes the value 1 if the 
expression expr is logically true, and 0 if it is false, and 
xj (resp. yj) is the value of the jth character for the taxon 
x (resp. y). Of course this needs to be normalized, so 
the “distance” between x and y is defined as

Having calculated this function for all taxa, 
a n × n matrix is obtained. The columns of this 
dissimilarity matrix are then treated as variables 
from which a set of pairwise correlation coefficients 
r can be computed. This is the origin of the term 
Baraminic Distance Correlation. The values of r 
are then assessed for significance using a t-test, 
and the resulting “significance matrix” inspected 
for patterns. A considerable creationist industry of 
baraminological data-mining has developed in the 
last decade in which this idea is applied to many 
different datasets, of which (Aaron 2014; Cavanaugh 
and Wood 2002; Garner 2004, 2014; Ingle and 
Aaron 2015; Wood 2002, 2010, 2011, 2016) form 
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1 Strictly speaking, BDC doesn’t use every character; there is a preliminary stage which eliminates characters that are not 
“relevant,” i.e., are sparsely represented in the taxa. Typically, the criterion for relevance seems to be 95% representation—
occasionally 90% or even less; whether the results are sensitive to this choice is rarely mentioned. Presumably, the idea could be 
extended to eliminating taxa as well, although this does not seem to be an issue.
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just a sample. Some of the results are equivocal, 
others problematic (particularly Wood 2010, 2011), 
which comes to unexpected conclusions in the area 
of putative human ancestry), but the statistical 
validity of the method has just been assumed. Some 
years ago, Wilson (2010) made a plea for better 
scrutiny of the underlying assumptions of statistical 
baraminology, but as far as I can tell, this hasn’t 
happened. On examining SB from a conventional 
statistical perspective, I have discovered several 
problems, some of them very serious. These will now 
be discussed in detail. 

Problematic Aspects of BDC 
Distance metrics 

BDC assumes we can assign a precise meaning to 
the idea that (say) object x is closer to y than to z. Wood 
(2002) makes a virtue of the “simplicity” of the distance 
metric described above, but it is hardly unique. (For 
some background on distance metrics, see Appendix 
A.) Nor is it necessarily the most appropriate one, 
as the data type of the variable under consideration 
may be an important factor. (For background on 
data types, see Appendix B.) It is very often the case 
that the underlying variables are nominal: that is, 
they express which of a set of discrete characters is 
possessed by the taxon of interest. Often, indeed, the 
variables are strictly binary, having just two values—
the presence (1) or absence (0) of a character. Thus, if 
we imagine the p-dimensional character space which 
the taxa inhabit, the set of feasible points in this space 
consists only of the “corners,” and is a tiny fraction 
of the space as a whole. (For example, if there are 3 
binary characters, there are just 8 possible points, 
corresponding to the corners of a cube. Points along 
an edge, or in the interior, correspond to no physical 
reality at all.) Sometimes, however, they may be 
ordinal—different objects may have smaller or larger 
instances of a character. It is conceivable, too, that 
some variables are quantitative—measurable on 
an interval or even a ratio scale. Defining a suitable 
measure of distance for a mixture of types of variable 
then becomes a highly subjective matter. Of course, 
it is always possible to reduce a numerical variable 
to a mere category, but there is inevitably a loss of 
information or—even worse—the potential to mislead 
the distance function.2 There may also be some idea as 
to the relative importance of the characters, in which 
case a weighted matching distance can be defined; for 
example, in the case of simple matching this might be 

where ϕj is the weight of the jth variable. 

Moreover, even if we assume the simplest case—
purely nominal variables and the simple matching 
definition—we are still implicitly assuming that 
presence and absence of characters is of equal 
significance. This may not be true, and if a character 
is expressed by an ordinal variable, it becomes highly 
dubious. Statisticians are not unaware of this, and 
several alternative measures have been suggested. 
Consider first the specific case of binary variables: by 
counting the presences and absences separately, the 
distance formula can be rewritten as 

where ˄ is the standard symbol for logical “and.” 
Building on this, some obvious extensions can be 
seen. If the presence of a character (xj = 1) is more 
significant than its absence (xj = 0), the distance 
measure preferred is often the Jaccard distance: 

Still other ideas have been suggested: the Dice 
distance, which gives twice as much weight to the 
case where both characters are present, has the value

(This could be further generalized to reflect 
subjective opinions on the importance of presence 
or absence by using some other value than 2.) These 
formulae can be extended to the non-binary case if 
necessary, and weighted versions of all of them can 
also be defined. For an example of some calculations 
using these metrics, see Appendix C. A recent study 
by Finch (2005) concluded that the Jaccard and Dice 
distances tend to do better than simple matching, in 
terms of cluster recovery for simulated binary data 
where the “true” taxonomic structure was known. 

For non-binary variables, an obvious modification 
is to normalize the set of possible values to lie in the 
range [0, 1], and to modify the contribution made by 
such components by calculating the absolute distance 
|xj − yj| between the relevant pairs of variables 
whenever xj and yj are both non-zero. 

Turning now to the various techniques described 
in Robinson and Cavanaugh (1998) and Wood (2002, 
2005a), which can be collectively identified under the 
heading “statistical baraminology,” we should note 

2 Imagine the case of a continuous variable with a range of [0,30]cm. Artificially dichotomizing by separating into [0,15) and [15,30] 
means that two samples that measure 14.99 cm and 15.0 cm are regarded as different, when they are obviously nearly identical. 
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that they all assume the computation of a suitable 
distance metric, although generally only results 
using the simple matching distance were reported 
in these papers. In fact, the question of whether 
this is appropriate appears to be ignored in the SB 
literature.

Distance correlation 
The “novel” tool developed in Robinson and 

Cavanaugh (1998), and routinely employed in 
papers on SB via a piece of online software known 
as BDIST (Wood 2001, 2008a, 2008b), is the use of 
baraminic distance correlation. The columns of the 
dissimilarity matrix are treated as variables from 
which a set of pairwise correlation coefficients r can 
be computed using the well-known Pearson product-
moment formula. The values of r are then assessed 
for significance using a t-test, and the resulting 
“significance matrix” inspected for patterns. 

There are some serious questions about the 
validity of this procedure. A correlation coefficient 
measures the strength of a postulated linear 
relationship between two variables, assuming we 
have obtained a set of independent random samples 
of each. Implicitly, we suppose a model 

Y = D + βX + ε 
where Y and X here represent the “response” 
and “explanatory” variables, respectively, and ε 
represents a random error term. The values of D and 
β (and hence the correlation between Y and X) are 
estimated by minimizing the sum of squared errors, 
which is a L2 norm. (See Appendix A on norms.) 
These errors are assumed to be independently 
and identically distributed. In particular, if the 
distribution of the errors is Normal, it is possible to 
test for “significance” of the coefficient β by means of a 
t-test with n − 2 degrees of freedom and a pre-specified 
“P-value,” which is the probability of rejecting a null 
hypothesis that β is zero if the hypothesis is true.3 
(Testing β is equivalent to testing r.) Firstly we should 
realize that the Pearson formula assumes the data 
are continuous random variables, although formally 
one can always apply the formula and obtain a result 
even if this is not so. In any case, it gets worse. 

In the application to a distance matrix, the 
underlying assumptions for correlation are invalid, 
for the “variables” are simply the columns4 of 
the distance matrix D, which are also just the 
rows transposed! These values are certainly not 
independent realizations of a random variable: they 
are values of a distance metric, which inherently 
connects the columns (and rows) together in a 

particular way. Consider columns 1 and 2, for 
example: the first two rows would read 

0 d

d 0 

where d = d(x1, x2) = d(x2, x1). It is obvious that these 
rows are not independent, yet every pair of columns 
will contain such a 2-row subset. In effect, the nature 
of the data (as values of a distance metric) imposes 
constraints, which means that in the underlying 
linear model the errors, by definition, cannot be 
independent random variables. Moreover, if nominal 
variables form the basis for the distance matrix, there 
can only be a finite set of values (i.e., {0, 1/p, 2/p,. . .   , 
(p–1)/p,1}) for distance, whereas linear regression 
requires continuous variables. When the response is 
binary and the explanatory variables continuous we 
can use a generalized linear model (GLM) by means 
of a transformation (for example, logistic regression), 
but when both response and explanatory variables 
are discrete, we are really leaving the realms of 
linear regression altogether. Putting it another way, 
BDC commits a category error, using variables that 
are L1 distances, but minimizing a L

2
 norm! We can 

certainly carry out a “regression” in a formal sense—
i.e., we can plug numbers into some statistical 
formulae and calculate some “correlations,” but 
what it means is highly debatable. And as the errors 
cannot be Normally distributed, the use of a t-test is 
completely invalid. Generally, in such cases, a “non-
parametric” test might be recommended, but it is 
hard to say what would be appropriate here. 

Now clearly this procedure does something, 
but as the “correlations” do not have a well-
defined distribution, we cannot tell which ones 
are “significant;” that is, we have no idea what the 
distribution of these values would be under either 
a null or an alternative hypothesis. Generally, we 
assign significance to a value that is highly unlikely 
to arise by chance—usually defined as exceeding the 
pre-specified critical value. But how can we obtain 
such values in the absence of Normally distributed 
variables? In the simplest case, we can sketch a 
possible answer. If we have a n × p matrix of 1s and 
0s, the density of the matrix X can be defined as

 
In other words, ρ tells us the fraction of 1s in the 

matrix X. Let us think about what would influence 
the distribution of values of the distance between 2 

3 This pre-specified or “critical” value (rather confusingly) is usually also given the symbol D, and is the chance of a “false positive.” 
A value D = 5 is often assumed by default, but this is bad practice.
4 More exactly, the elements of column j, for example, are treated as a set of observations on the j’th variable.

n p

ijxρ
np
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taxa under a null hypothesis that there is no pattern, 
i.e., if the 1s were assigned at random such that the 
average density is ǒ. In this case, a match between 
these taxa implies that for each character we must 
have either two 1s or two 0s. This happens by chance 
with probability ǉ = ǒ2 + (1 − ǒ)2. If there are k matches, 
the normalized “distance” between these taxa would 
be (n − k) ⁄ p, and the probability of k matches can be 
found from the binomial distribution as 

    ,

which thus provides us with the distribution of 
“distances.” It’s difficult, however, to make further 
progress: what is really needed is a joint hypothesis 
test of a set of correlations, but to evaluate the joint 
distribution of the “correlations” obtained from a set 
of n such variables is an even harder problem! At any 
rate, it should be clear that this isn’t simply a matter 
of a t-test with degrees of freedom n − 2. Even if we 
could find it, a “critical value” for r will depend not 
only on n, but also on p and U. 

Compounding the problems, however we obtain a 
critical value, is the non-independence of the columns 
of D. But even suppose they were independent: in 
any set of N variables, there are 

two-way comparisons between them, which implies 
that the chance of false positives is substantially 
inflated above the prescribed critical value.5 What 
constitutes “significance” is therefore exceedingly 
hard to determine, and in reality, independence is an 
impossible condition to satisfy anyway. 

These problems have been routinely ignored in SB 
literature—indeed, there is no evidence that they have 
really been considered. Wood (2011), for example, 
has argued in favor of statistical baraminology in the 
case of humanoid species as follows: 

With statistical baraminology, the correlation test 
can be used to estimate the significance of organismal 
similarity or difference . . . . [so that] we can assign 
statistical probabilities to the differences that divide 
human from non-human and to the similarities that 
unite humans with other non-sapiens human species.

which he regards as the clinching argument against 
“qualitative” approaches. It would be nice if this 
statement were true, but until a truly rigorous 

probability model has been formulated and estimated, 
the jury must stay out.

Pattern recognition 
The BDC procedure can only be seen, then, as a 

heuristic technique that may help to visualize the 
structure of the data—but we have no reliable way of 
knowing whether it does or not, whereas we do know 
that the assumptions underlying it are false. It would 
be possible to improve the BDC approach by carrying 
out a randomization test; that is, having calculated ǒ, 
we could simulate a large number of distance matrices 
with the same statistical characteristics, calculate 
all the r values, and use these to find critical values. 
But every set of {n, p, ǒ} parameters would generate 
different critical values, so the computational burden 
would be heavy. And there is a further problem: even 
when we have obtained “significant” correlations, we 
still have to interpret the pattern, if any. 

At this point, the multi-dimensional scaling 
(MDS) procedure is generally invoked. Earlier SB 
literature (Cavanaugh and Wood 2002) used a 
technique called Analysis of Patterns (ANOPA), but 
since the publication of Wood (2005b), MDS seems 
to have become the standard approach.6 Unlike 
BDC, MDS is a well-documented, principled, tried-
and-tested statistical technique for visualizing high-
dimensional data in 2 (or occasionally 3) dimensions; 
it does, however, imply a possibly considerable loss 
of information. In 2 dimensions, the basic idea is to 
find a set of coordinates (u

i
,vi) for taxon i such that

the distances ǅ
ij
 between taxa i and j (derived by

using some distance metric in the (u, v) space) are in 
some sense jointly as close as possible to the actual 
distances dij. (There are many different versions of 
MDS, but I assume the one meant is the “classical” 
approach, which involves minimizing a sum of 
squared differences—the L2 norm again. There are 
also versions that use the L1 norm, which are harder 
to fit, but less susceptible to outliers.) Plotting the 
coordinates on a graph then helps to suggest which 
taxa belong together and which do not. Sometimes, 
a 3D version is used with coordinates (ui, vi, wi) 
which can be helpful if sophisticated visualization 
software is available. There is still an inescapable 
subjectivity to the exercise, however: different people 
may see different groupings, and these may in any 
case depend on what distance metric is used to define 
ǅij. In fact, the issue of appropriate distance metrics 

� � � �p-kp ǉ ǉk
l 1 �

� �2 NM

5 If the critical value is D, the chance of at least one false positive is 1 − (1 − D)M ≈ MD for small D, if the variables are independent. 
If they are not, without knowing much more about the dependence structure of the whole ensemble it’s extremely difficult to say 
what it is!
6 This is sensible, as the methodology used by ANOPA is inappropriate to nominal data; it entails the calculation of centroids 
and Euclidean distances from the data matrix X, but the use of medoids is needed for more nominal data where rectangular (or 
“Manhattan”) distances (the L1 norm again) are given. According to the account in Wood and Murray (2003, 115–136), ANOPA 
‘‘reduces the dimensionality while minimizing the loss of information’’ in the dataset. Unfortunately, it is not clear exactly what 
criterion is measuring “information,” nor how its loss is minimized.
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remains unresolved—both for the original dataset, 
and for the MDS coordinates. Moreover, as Wilson 
(2010) points out, an unthinking attachment to the 
results of an MDS analysis may give rise to very 
strange conclusions. One of the most startling of these, 
Wood’s claim that the hominim Australopithecus 
sediba is human, has been severely critiqued by 
Menton, Habermehl and DeWitt (2010). 

Whether their additional criticisms regarding 
the use of statistical techniques in general are truly 
justified, however, cannot be definitively answered 
when the BDC/MDS methodology is itself a flawed 
and unprincipled7 procedure. There are alternative 
statistical approaches, based on a much firmer 
foundation, such as cluster analysis. The question 
as to whether and how this can be applied to 
baraminology is considered in a separate paper 
(Reeves 2021). 

Bootstrapping 
Wood (2008a) has proposed a modified version of 

BDC that involves the idea of bootstrapping. Efron and 
Tibshirani (1993) is still the best introduction to this 
concept, which is in essence rather simple (although 
the mathematics that justifies it is rather less so). 
Bootstrapping is most commonly used to estimate 
the variability of an original single parameter 
estimate by means of a confidence interval. Classical 
statistics does this by making certain assumptions 
about the sampling distribution of the estimate of 
such a parameter—most commonly, that it can be 
approximated by a Normal (or occasionally some 
other well-defined) distribution, but in many cases 
this assumption is invalid. The bootstrap method is 
a solution for such cases. Our original dataset could 
have been different, but it is in fact, the best estimate 
we have of the underlying probability mass function, 
so we generate a large number B of pseudoreplicates, 
the same size as the original sample, by resampling 
from that original sample with replacement. (As it 
is with replacement, some elements of the original 
sample will appear more than once, while some won’t 
appear at all. It is this that makes the pseudoreplicates 
different from the original, and from each other.) 
Appendix D provides a simple example of the idea, 
but the critical assumption is this principle: 
x Bootstrapping Principle: the sampling distribution

of the sample around the population parameter
can be approximated by the sampling distribution
of the resample around the sample parameter.
But what are we (re-)sampling? The normal

approach would be to focus on the taxa: assume there 
are more kinds of creatures than we have employed in 
the standard BDC analysis. (Perhaps there are even 
new species out there, or—more likely—we know of 

other species but just don’t have data on them.) For 
example, consider the data matrix X as a set of rows 
as follows: 

A resample of the row indices in the case n = 6 
might generate {1, 2, 1, 4, 2, 5}, so the corresponding 
pseudoreplicate would consist of the rows 

from which a distance matrix could be calculated, 
and the BDC procedure followed through—a process 
repeated B times, each time with a different set of 
“pseudo-taxa.” But if the datasets are fairly complete 
in terms of taxa, they effectively are a population, 
not a sample, so what we might gain is puzzling: the 
groupings that we find are what they are. In fact, 
any “pseudo-taxon” introduced will be identical to 
some other real taxon. Consequently, “distances” 
between them are zero, somewhat distorting the 
whole process. Nonetheless, as a formal procedure, 
we could compute a measure of consistency from 
the pseudoreplicates—for example, how many times 
each pair of (real) taxa is in the same grouping. (For 
a review of other ideas, see Hennig 2007). 

In any event, Wood’s description of the process he 
uses in Wood (2008a), though rather opaque, appears 
to make the primary focus on the characters (i.e. the 
columns), which he regards as a sample from a larger 
set of characters that might have been used if we had 
measured them, so the pseudoreplicates are obtained 
by sampling with replacement B times from the set 
of p columns. Effectively, if I have understood Wood 
(2008a) correctly, the normal roles of objects and 
variables are reversed. I understand Wood is worried 
as to whether the groupings found are influenced by 
the particular characters selected, which is certainly 
a valid subject for inquiry, and the use of “random 
perturbations in the character data” would be one 
way to test the robustness of a statistical procedure 
in this area. But is bootstrapping BDC a statistically 
principled way of accomplishing this? 

To see the problems with this approach, consider 
an example from Efron and Tibshirani (1993). 
The dataset consists of values of two measures of 
performance (LSAT and GPA)—these correspond 
to characters (columns)—for students entering 15 
US law schools (rows)—these correspond to taxa. 
They create pseudoreplicates by resampling the 

7 Unprincipled: not in a moral sense, but a statistical one.
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rows (taxa) 15 times, and calculate the correlation 
between LSAT and GPA for each pseudoreplicate.8 
But if they were to resample the columns, in many 
cases this would mean calculating the correlation 
between LSAT and LSAT, or GPA and GPA, which 
would obviously be nonsensical! Yet by analogy this 
is, I think, what Wood is doing. 

Now, for a valid application of the bootstrapping 
concept the (re-)sample values are required to be 
independently and identically distributed (iid). 
This is usually a reasonable approximation when 
the sample values are scalar quantities. But here 
each taxon would in general be a multi-dimensional 
vector, comprising values from different domains: 
dichotomies, multiple categories, ordinal, discrete, 
or even continuous (see Appendix B). Even when all 
the characters are dichotomous, so that each of the n 
elements of the vector has a Bernoulli distribution, 
they are not all guaranteed to have the same Bernoulli 
parameter. More generally, if there are different 
types of distribution, it is self-evident that the 
resamples are not identically distributed.9 Moreover, 
while it seems to be an article of faith in SB that all 
characters are equal (see Wood and Murray 2003, 
115–136), what if some really are “more equal than 
others?” Even evolutionists such as Conroy (2005, 
235–237) recognize that morphological characters 
(in his case, in hominims) are inextricably dependent 
on each other, so the values of the sample variables 
are very likely not independent either. Even if the 
original columns are independent, the resamples 
are guaranteed not to be, and the fundamental 
Bootstrapping Principle is in doubt even for the most 
basic dichotomies-only case. And of course, all the 
problems with the BDC procedure itself remain. The 
question of character selection deserves attention, 
but this approach has too many unexamined 
assumptions, and some obviously incorrect ones. 

Conclusions 
The methods used by statistical baraminology have 

multifarious flaws, despite the surface appearance of 
rigor and sophistication. 
x The basic assumption that all characters are equal

appears to be untested. In fact, if Wilson is correct
to argue (2010) that it is nearly always the case
that all characters are not equally important,10 the
analysis would be affected in important ways.

x The choice of distance metric is rarely discussed in

the context of the nature of the variables involved. 
x Typically the distance metric used assumes, 

without justification, that equal weight should be 
attached to the presence and absence of characters. 

x The BDC technique is not based securely on 
statistical principles, and the question of true 
statistical significance of the “correlations” is side-
stepped.

x While MDS has a better statistical pedigree than 
BDC, the inherent subjectivity of the choice of 
distance metric, and the loss of information in 
the dimensionality reduction, mean that results 
should be treated with more than usual caution.

x In a formal sense the application of bootstrapping 
is uncontroversial, but it is not clear that the 
bootstrap is correctly applied, nor that the 
Bootstrapping Principle can hold for SB methods. 
As is shown in Reeves (2021), it is possible—and

in fact—fairly simple, to apply cluster analysis to the 
sort of questions being asked by proponents of SB. 
Statistical software such as the R language is readily 
available (at no cost) with a wide choice of principled 
algorithms using well-defined statistical tests of 
significance. BDC really should be abandoned. But 
even this isn’t the end of the matter: in Reeves (2021), I 
discuss the important conceptual and practical 
considerations that arise when a large number of 
characters are evaluated across a range of taxa. This 
again is something routinely ignored by SB, as it 
remains under the spell of a “holistic” treatment of 
the data in order to facilitate a statistical analysis. 
Whether the analysis has a rigorous foundation or 
not, there are some important questions to be asked of 
the data before any software is applied. 

I don’t wish to be too hard on the proponents 
of statistical baraminology; the goal is worthy 
and the fundamental idea commendable, even 
if the techniques applied are inadequate, and 
the treatment of the data too often perfunctory. 
Moreover, some excellent and painstaking—even 
heroic—work has clearly been done in preparing and 
editing a growing collection of very useful datasets. 
But it is a shame to see much effort ploughed into a 
mistaken enterprise that may only give ammunition 
to unfriendly critics of creationist research. Not that 
creationists are alone in misapplying statistics; 
evolutionists are no sure guide themselves. (See 
Mannion et al. 2011 for a fairly recent example of 
poor statistical understanding.11) If as creationists 

8 The point of this example is that the histogram of the correlations resulting from the 1,000 pseudoreplicates is highly skewed, 
demonstrating the non-Normal nature of the distribution.
9 For example, suppose each taxon has 20 characters—12 dichotomies, 6 ordinal, and 2 continuous; resampling the columns 
might generate one “pseudoreplicate” with 15 dichotomies and 5 ordinal characters, another with 10 dichotomies, 7 ordinal, and 3 
continuous characters, etc. The sampling distributions clearly cannot be the same.
10 It is fair to note that, contra Wilson, Wood and Murray (2003) place great emphasis on what they call the “holistic” virtues of 
treating all characters alike, although I have seen little in the nature of evidence to support the relevance of this claim.
11 Mannion et al. (2011) conduct multiple comparisons of correlation coefficients, apparently without adjusting critical values for 
the inherent inter-relationships—the same problem that arises with BDC.
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we wish to apply statistics to the identification 
of created kinds, just plugging numbers into a 
computer program (even if as in Reeves (2021) it is 
more firmly based than BDC) is inadequate. I would 
suggest we need to 
x understand better the nature of the data we have

collected and the assumptions upon which rests
our measure of “distance”

x understand better the assumptions underlying
statistical methods such as multi-dimensional
scaling, cluster analysis, randomization tests and
bootstrapping

x realize the importance of testing our assumptions
and checking results for robustness (e.g., does
changing a distance metric alter the conclusions?)

x treat conclusions with much greater caution than
has sometimes been the case (cf. Australopithecus
sediba).
Finally, I am no geneticist, but it seems highly

likely to me that the exclusive focus on phenotypic 
information is a mistake. Perhaps there aren’t 
enough sequenced genomes for comparison, and 
defining “distance” at the level of DNA has its own 
collection of problems, some even more difficult than 
in the phenotype. But we surely expect the creatures 
within the  kinds to be related on a genetic level.
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Mathematically, a distance metric has the 
following properties: 

Given points (or vectors) x, y, and z in a 
p-dimensional vector space X, a function 

                       (where IR is the real line),  
 is a distance metric if 

If this looks threatening, consider it intuitively. 
Really this is just stating the obvious: the first three 
conditions say (respectively) that a distance may be 
zero (but if and only if the points are coincident), but 
can’t be negative, and that it shouldn’t depend on the 

direction of travel. The last (the triangle inequality) 
says that taking a detour can’t make the route 
between two points any shorter. Distances in cluster 
analysis may not always obey this last condition—
the Dice distance, mentioned in the main text, is a 
case in point. When any condition is not true, we may 
speak more generally of a distance measure. 

Closely related to the idea of distance is that of 
a vector norm, ║[ɠ, which measures the “size” of a 
vector x. The most common norms are the L1 norm 
║x║1 = ∑i|xi| and the L2 norm ║x║2 = √(∑ixi

2). As the 
norm of x is effectively its distance from the zero 
vector 0—the origin of its coordinate system, it can 
be seen that d(x, y) = d( x − y, 0) = ║x − y║. Thus, we 
can also speak of L1 or L

2
 distances depending on the

underlying norm. 
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Appendix B

It is a mistake to assume that all statistical 
techniques can be used on any type of statistical 
data. Statisticians commonly distinguish between at 
least 4 types of data: When the categories into which 
objects can be placed are simply “names” without 
underlying order (e.g., red/blue/green), the data 
are nominal; if there are only two categories (e.g., 
male/female), we further denote them as binary or 
dichotomous. If the categories can be ordered they 
are ordinal (e.g., small/medium/large). When they 
can be measured on a scale, they are quantitative. 
We distinguish quantitative variables as discrete if 

they are the result of counting, or continuous if they 
are the result of a measurement. The latter may be 
further divided: If the measuring scale is merely an 
interval scale (e.g., Fahrenheit temperature), there 
is no true zero and we can only compare differences, 
but if it is a ratio scale (e.g., blood pressure), we can 
calculate ratios and percentages. (If my diastolic 
blood pressure has decreased from 100 to 97, I 
can say either by 3 units or by 3%, but if my body 
temperature has decreased from 100° F to 97° F only 
the difference of 3° F makes sense. Try converting the 
ratios to Celsius!) 

As an example for constructing different distance 
measures, consider the following table of 2 objects 
(taxa) and 9 binary variables (characters): 

Comparing x and y, we find that 

Thus the simple matching distance is 

Appendix C

Taxon
Character

1 2 3 4 5 6 7 8 9
x 1 1 0 0 1 0 0 1 1
y 0 1 0 1 1 1 0 1 1
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the Jaccard distance is 

while the Dice distance is

Notice how the distance between x and y is changed 
by the choice of distance measure.
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The bootstrap estimator of a statistical parameter 
assumes that the best “guess” for the true probability 
distribution of a random variable is the probability 
mass function obtained from the actual data. For 
example, if we toss a fair coin (i.e. prob. of a head 
= prob. of a tail = 0.5) three times and record the 
number of heads, we can calculate the expected 
probability distribution analytically using the 
Binomial distribution, as in the following table:

 

But what if we suspect the coin is biased? 
Theoretical calculations are no good; we need data. 
Suppose we do 8 experiments, each time tossing 
the coin 3 times and counting the number of heads. 
Suppose they were distributed as shown below: 

This is the empirical probability distribution. 
There are 4+2+3 = 9 heads in these 24 coin tosses, 
so the probability of a head is estimated as 
pը

H
 =      =     for this coin, but with what degree of 

confidence? We could use the Binomial distribution 
again to find a confidence interval, but we could also 
estimate the variability of the estimate by drawing 
(say) 1,000 samples of size 8 with replacement from 
the empirical mass function, configured as the set  
{0, 0, 1, 1, 1, 1, 2, 3}. From each resample, calculate an 
estimate pը H, and sort all the estimates into ascending 
order. To get (say) a 95% confidence interval, just 
eliminate the largest 25 pը H values to find an upper 
limit, and the smallest 25 to find a lower limit. This 
is bootstrapping. 

Appendix D

No. of heads 0 1 2 3
Prob. 1/8 3/8 3/8 1/8

No. of heads 0 1 2 3
Prob. 2/8 4/8 1/8 1/8

9
24

3
8
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