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Baraminology by Cluster Analysis:

A Response to Reeves

Todd Charles Wood, Core Academy of Science, Dayton, Tennessee.

Abstract

In his recently-published critiques, Reeves provides numerous important suggestions for the 

improvement of baraminology as well as pointed criticism of baraminic distance correlation (BDC).  

Given that BDC violates certain methodological assumptions, Reeves concludes that it is at best a 

heuristic of unknowable utility. Here, I evaluate 82 distance matrices taken from a previous study of 

Cenozoic mammals. After defining a BDC clustering method, I find that Pearson-based BDC performs as 
well as or better than medoid partitioning, fuzzy clustering, and Spearman-based BDC. The majority of 

Pearson BDC clusters (68.9%) also appear as clades in published phylogenies using the same character 
sets. I therefore conclude that despite questions about its formal validity, Pearson BDC remains a useful 
heuristic for clustering taxa and should not be rejected merely on the basis of Reeves’s critique. Because 

a large minority of studies revealed disagreement between different clustering methods, greater 

uncertainty about the previous baraminological conclusions was introduced using medoid partitioning 

and fuzzy clustering.  Consequently, I recommend using multiple clustering techniques (Pearson BDC, 
Spearman BDC, fuzzy analysis, and medoid partitioning) in future baraminology studies.

ISSN: 1937-9056 Copyright © 2021 Answers in Genesis, Inc. All content is owned by Answers in Genesis (“AiG”) unless otherwise indicated. AiG consents to unlimited copying and 
distribution of print copies of Answers Research Journal articles for non-commercial, non-sale purposes only, provided the following conditions are met: the author of the article is clearly 
identified; Answers in Genesis is acknowledged as the copyright owner; Answers Research Journal and its website, www.answersresearchjournal.org, are acknowledged as the publication 
source; and the integrity of the work is not compromised in any way. For website and other electronic distribution and publication, AiG consents to republication of article abstracts with direct 
links to the full papers on the ARJ website. All rights reserved. For more information write to: Answers in Genesis, PO Box 510, Hebron, KY 41048, Attn: Editor, Answers Research Journal.
The views expressed are those of the writer(s) and not necessarily those of the Answers Research Journal Editor or of Answers in Genesis.

Keywords: Baraminology, statistical baraminology, medoid partition, fuzzy clustering, Cenozoic 

mammals, created kinds

The theoretical concepts underlying the science 
of created kinds have been around since the time 
of Linnaeus. Though Linnaeus became known for 
species fixity, he softened his beliefs later in his career, 
suggesting instead that new species could indeed 
arise from previously-existing species. Darwin took 
this malleability of species and turned it into an over-
reaching explanation for a vast array of biological 
and geological data, from the order of the fossil 
record to anatomical similarities to the adaptability 
of domesticated animals. In response, creationists 
asserted that biological change had limits. Frank 
Marsh frequently mentioned discontinuity, the 
created difference between kinds, or as he called 
them, baramins. “[A]lthough certain morphological 
structures do appear similar in many kinds, still a 
much more obvious phenomenon is the discontinuity 
between kinds” (Marsh 1944, 187).

While Marsh conceived of this discontinuity as a 
physiological limit of variation, modern statistical 
baraminology focuses on testing a “discontinuity 
hypothesis.” As previously described, “This is the 
research program of baraminology, to evaluate 
the claim that organisms were created in discrete, 
discontinuous groups that are recognizably different 
from all other organisms. We can call this idea 
the ‘discontinuity hypothesis’” (Wood 2011a). The 
principle test previously used to detect discontinuity 
is a combination of methodologies, which begin with 
the discrete character matrices that are found in 
published phylogenetic studies. Specifically, an n × n 
distance matrix is calculated using a simple matching 

coefficient referred to as a baraminic distance, where 
n is the number of taxa. Next, a matrix of linear 
correlation coefficients and probability estimates 
are calculated from the distance matrix by pairwise 
comparison of rows, yielding a baraminic distance 
correlation for each pair of taxa. BDC is more recently 
done using a standard bootstrapping of characters, 
in order to assess the sensitivity of the observed 
BDC patterns to perturbations in the underlying 
character matrix (Wood 2008a). Finally, a method 
of visualizing the distances using multidimensional 
scaling (MDS) or analysis of pattern (ANOPA) aids 
in the interpretation of the BDC (Cavanaugh and 
Sternberg 2002; Wood 2005a). These techniques 
have been applied to more than a hundred different 
character matrices (for example, Wood 2005b, 2008b; 
Thompson and Wood 2018).

In two extensive papers, Colin Reeves (2021a, 
2021b) offers a substantive critique of the entire 
statistical baraminology program, from the simple 
matching coefficient as the distance of choice to the 
BDC and MDS techniques used to evaluate the 
distance matrix. As an alternative to BDC, Reeves 
offers a study of a turtle character matrix using 
two distance metrics (simple matching and Jaccard 
distances) and two clustering methods (medoid 
partitioning and fuzzy analysis). Having known about 
Reeves’s papers for several years, I am delighted to 
see them finally in print, and I and all creationists 
are immensely indebted to him for assisting us in 
placing the statistical analysis of baramins on a 
somewhat firmer foundation. While Reeves has made 
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a valuable contribution to baraminology, his articles 
are not without shortcomings, which must be studied 
carefully to identify a practical way forward.

Here, I review the program of morphology-focused 
statistical baraminology and then evaluate Reeves’s 
claims regarding previous baraminology analyses. 
My intention is not to offer a simple rebuttal, but 
to clearly identify the problems and shortcomings 
of BDC in order to offer possible corrections. I then 
re-evaluate a selection of mammal baraminology 
studies from a recent publication (Thompson and 
Wood 2018). My results indicate that the methods 
recommended by Reeves produce results very 
similar to the original BDC studies, indicating that 
the methodology, though on questionable statistical 
foundations, nevertheless provides a very useful 
heuristic.

A Brief Review of 

Morphology-Based Baraminology

Before exploring new statistical baraminology 
techniques recommended by Reeves, it is valuable to 
review the objectives of statistical baraminology as 
I see them, because none of these change or ought 
to change in light of Reeves’s comments. In the 
1990s, baraminology was still largely based around 
hybridization, as recommended by Frank Marsh 
(1944). Since so much of the creation/evolution debate 
focused on putative “transitional forms,” such as four-
legged “whales” (e.g., Wieland 1990), the horse series 
(for example, Chapman 1991), and australopiths (for 
example, DuBois 1988), my colleagues and I desired a 
different, purely morphological method that we could 
use to interpret interesting fossil cases and other 
cases where hybridization was neither available nor 
practical.

In 2003, I and three colleagues introduced a “refined 
baramin concept,” which we described based entirely 
on similarity (Wood et al. 2003). The refined baramin 
concept summarized what we were trying to do with 
statistical baraminology as well as providing a guide for 
future research. The refined baramin concept explicitly 
endorsed similarity and dissimilarity as the defining 
characteristic of baramins, from which hypotheses of 
ancestry could be proposed and explored. This had the 
advantage of moving baraminology strictly into the 
empirical realm rather than untestable inferences of 
common ancestry.

According to the refined baramin concept, a 
holobaramin is “a group of known organisms that 
share continuity (that is, each member is continuous 
with at least one other member) and are bounded by 
discontinuity.” We defined continuity as significant, 
holistic similarity and discontinuity as significant, 
holistic difference. In practical terms, statistical 
baraminology studies do not achieve genuinely 

holistic analyses. Instead, “holistic” became a 
guide to selecting character matrices. For example, 
character matrices that included both cranial and 
postcranial characters were preferred over matrices 
of just cranial characters. Matrices of very limited 
scope, like dental characters only, were generally to 
be avoided. Likewise, character matrices with more 
characters were preferred to those with fewer, with 
the understanding that any sample of characters 
may or may not be a reliable reflection of all possible 
characters. Thus, the emphasis on “holistic” was 
not an attempt to make an empirical claim about 
the value or validity of certain character matrices 
but rather a philosophical guiding principle for 
selecting the sort of characters used in statistical 
baraminology. Indeed, without some independent 
knowledge of baramin boundaries, we cannot hope to 
empirically validate any set of characters, holistic or 
otherwise (or distance metrics, weighting schemes, 
or clustering techniques, for that matter).

In a more recent paper (Wood 2011a), I outlined 
the “discontinuity hypothesis,” which I still believe 
is an excellent goal for statistical baraminology. My 
explanation of the discontinuity hypothesis is worth 
quoting at length.

When we consider the biblical and biological evidence 
together, it seems quite reasonable to hypothesize that 
God created organisms in the categories that we call 
baramins, within which considerable diversification 
and speciation can take place but between which 
there are significant dissimilarities that Marsh 
called discontinuity. Though these conclusions are 
reasonable, as I explained above, they are not clearly 
and irrefutably taught in the Bible and are therefore 
open to empirical testing, insofar as we can do so. 
This is the research program of baraminology, to 
evaluate the claim that organisms were created in 
discrete, discontinuous groups that are recognizably 
different from all other organisms. We can call this 
idea the “discontinuity hypothesis”. (Wood 2011a)
The practicality of testing this hypothesis brings 

us to the question at hand: What is the best practice 
for detecting discontinuity?

Reeves chides me for considering only one sort of 
distance metric that may not be the best metric for 
the data available. This is certainly a fair concern, 
but Reeves spends little time discussing the quality of 
the character data to which the distance metrics are 
applied. His neglect of data quality is understandable, 
since he is concerned with the statistical validity of 
techniques applied to the character data, but if we 
are to proceed with statistical methods, we must 
consider strategies for measuring, assessing, and 
dealing with data quality.

For the typical character data used in previous 
statistical baraminology studies, the most conspicuous 
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quality issue is the unknown character state. For 
example, Dembo et al.’s (2016) recent supermatrix 
for evaluating the phylogenetic position of Homo 
naledi contains 24 taxa and 391 characters for a total 
of 9,384 possible character states. Of those possible 
character states, only 4,774 (50.9%) are scored, 
and the unknown character states are unevenly 
distributed among the taxa. At least 74.9% of the 
character states are recorded for extant taxa (Homo 
sapiens, Pan troglodytes, and Gorilla gorilla), but 
the fragmentary remains of Kenyanthropus platyops 
are represented by only 37 (9.5%) recorded character 
states. Similarly, Australopithecus anamensis and 
A. garhi are represented by only 12.3% and 11.3% 
of the character states. Some missing character 
states could conceivably be discovered through a 
more careful examination of the presently-available 
fossils, but others cannot be known unless future 
fossil discoveries supply the missing information.

Two problems present themselves when 
considering unknown character states. On a practical 
level, pairwise comparisons and distance calculations 
can fail when taxa do not share any known character 
states, which can occur especially when matrices 
are combined into supermatrices. Even when two 
taxa have characters in common, the number of 
characters being compared can vary widely even 
if distances can be computed. Consider again the 
Dembo et al. (2016) supermatrix. H. antecessor is 
known from highly fragmentary fossils from the Gran 
Dolina site in northern Spain (Bermúdez-de-Castro 
et al. 2017). A. anamensis was originally described 
from a mandible, maxilla, and partial tibia (Leakey 
et al. 1995), and subsequent discoveries have been 
similarly fragmentary (Ward, Leakey, and Walker 
1999; Ward, Plavcan, and Manthi 2020) (the recently 
described skull of A. anamensis [Haile-Selassie et 
al. 2019] was not included in Dembo et al.’s study). 
Using this matrix, comparison of H. antecessor and A. 
anamensis involves only 4 characters out of a possible 
391, and the baraminic distance is 0.75. In contrast, 
comparing extant H. sapiens to A. africanus in the 
same supermatrix would involve 287 characters, 
with a baraminic distance of 0.376. Clearly these two 
distances are not meaningfully comparable when 
they are based on such widely different numbers of 
characters.

Robinson and Cavanaugh (1998a) addressed 
missing character states by introducing relevance. 
Character relevance is the fraction of taxa for which 
a character state is known for a particular character, 
and taxic relevance is the fraction of character 
states known for a given taxon. They recommended 
that characters of 95% relevance or higher should 
be included in any baraminology calculations. My 
own experience with relevance revealed a need for 

flexibility on this criterion, since character matrices 
of fewer than 20 taxa would eliminate characters 
when a single character state is unknown. With 
fossils and taxa with many unknown character 
states, I suggested taxic relevance also be considered. 
Taxa with too few known character states could be 
omitted from the comparison, since their distances 
are not comparable to the taxa with more character 
states known. I have not recommended a specific 
cutoff value, preferring instead to remove as few taxa 
as possible.

One final consideration is the selection of taxa. 
I detailed elsewhere arguments that I believe still 
favor looking for the holobaramin around the level 
of family (see Wood and Murray 2003). Briefly 
summarized, the creation account gives us enough 
crude taxonomic information to recognize multiple 
orders created during creation week. Interspecific 
hybridization is extremely common, even between 
members of different genera, and other evidences 
of speciation abound. Hence we ought to seek the 
baramin somewhere between the genus and the 
order. Since the family is the most prominent rank 
between those two classification ranks, that is where 
I chose to look. The discontinuity hypothesis then 
proposes that discontinuity ought to be identifiable 
between families at a higher rate that within families 
or even between groups of families. Testing the 
discontinuity hypothesis necessitates an ability to 
identify discontinuity, which then brings us to the 
technical details of baraminic distance correlation 
and cluster analysis.

Reeves’s Claims about Baraminology

Characters and Distances. Reeves (2021a) 
begins his critique of statistical baraminology 
with comments on characters and the choice of an 
appropriate distance metric. Specifically, he reviews 
a number of considerations commonly known in the 
taxonomic literature and asserts that the choice 
of an appropriate distance metric is not considered 
in baraminology literature. Reeves and previously 
Williams (2004) appear to imply that I deprecate 
or ignore the importance of other distance metrics 
or non-discrete character types. Perhaps I misread 
them on this point, but if not, I am happy to lay to rest 
this unjustified presumption. My public preference 
for discrete characters and baraminic distances 
should in no way be regarded as a rejection of other 
possible methods. Rather, my focus on discrete 
characters is born from a purely pragmatic desire to 
re-use existing character matrices. However, should 
a meaningful and biologically justifiable alternative 
distance metric (such as the Jaccard distance) be 
proposed, then by all means, let us use it. In fact, I 
would like to take the opportunity here in writing to 
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publicly advocate what I have privately mentioned 
to many students and colleagues over the years: I 
believe baraminology needs to move into the realm 
of morphometrics as a complement to discrete 
character matrices. I should also point out, in defense 
of statistical baraminology, that Reeves proceeds 
to use the simple matching coefficient (“baraminic 
distance”) in his analysis of the turtles, for very much 
the same reasons (simplicity and convenience) it was 
chosen in the first place 20 years ago.

Reeves also expresses concern about the choice of 
character weighting and especially about an alleged 
neglect of character weighting in baraminology. To 
assert that baraminologists have never considered 
character weighting is incorrect. For example, in 
Robinson and Cavanaugh’s (1998a) paper introducing 
the baraminic distance and BDC, they specifically 
note that a weighted distance could be used once 
the relationship between characters and baramins 
is better understood. Robinson and Cavanaugh’s 
(1998a) comments are especially pertinent to the 
question of alternative distances and character 
weighting:

Character selection, not the method of analysis, 
is expected to be the primary factor affecting 
baraminic hypotheses. False conclusions can be 
reached unless baraminically informative data has 
been sampled. Since we have no a priori knowledge 
regarding which characters are more reliable for 
identifying holobaramins, it is important to evaluate 
the reliability of a wide variety of biological data for 
inferring baraminic relationships.
In a follow-up paper, they correctly note that 

“characters are given weight merely by their inclusion 
in a study” (Robinson and Cavanaugh 1998b).

Robinson and Cavanaugh’s comments reveal much 
deeper difficulties than Reeves discusses. As they 
stated, character selection, itself a form of weighting, 
is likely the primary factor in any baraminological 
analysis. What characters should we choose? What 
characters will reveal patterns of discontinuity 
if such patterns exist? Are any hypotheses about 
holobaramins representative of reality or merely of 
the characters selected? In several previous studies, 
the drawbacks and peculiarities of some character 
matrices have been very obvious. For example, the 
composite character matrix used for the Sulidae 
merely separated the species into genera, implying 
that the underlying character matrices focused on 
character states that distinguished the genera but 
were largely uniform among the species within each 
genus (Wood 2005b). Likewise, the character matrix 
of Evander (1989) for the Equidae revealed a nearly 
linear structure in ANOPA (Cavanaugh, Wood, and 
Wise 2003) and MDS (Wood 2005a), implying that 
the characters were arranged such that advanced 

states accumulated in an additive manner from 
Hyracotherium to Equus.  Should we assume that 
the clustering patterns revealed in these cases tell us 
something about the actual created kinds?  To draw 
such conclusions, we would have to consider additional 
data outside of the character matrix and clustering 
analysis, which have been done in both cases.

Further, the issue of weighting has, in fact, been 
addressed in my own work, both explicitly (Wood 
2017) and through the re-examination of previous 
studies using alternative character matrices, which 
are each a different, de facto character weighting.  
Numerous examples of this can be cited, perhaps 
most notably for the felids (for example, Robinson 
and Cavanaugh 1998b, Wood 2008b, Thompson and 
Wood 2018), the theropods (Senter 2010, Wood 2011b, 
Garner, Wood, and Ross 2013), and the hominins. In 
the case of the theropods, studies are ongoing and 
have continually revised previous baraminological 
conclusions (McLain, Petrone, and Speights 2018).  
In the case of the hominins, additional studies with 
different sets of taxa and characters have exhibited 
relative consistency with previous results (for 
example, Wood 2017). In this manner, character 
weighting, while perhaps not explicitly named, has 
most certainly been considered.

Although more explicit character weighting has 
been mentioned as a necessary consideration from 
the earliest criticisms of the statistical methodology 
(for example, Williams 2004), to my knowledge no 
one has actually proposed a biologically justified 
weighting scheme, other than the aforementioned 
use of multiple datasets of different character 
samples. Published critiques of the conclusions of 
statistical baraminology studies have either asserted 
discontinuities without justification (Molén 2009) or 
have asserted discontinuity based on a small number 
of characters again without justification (Menton 
2010). These approaches are unsatisfactory since 
they amount to little more than a personal opinion 
of which characters ought to be weighted over others 
or which taxa ought to be separated from others. The 
science of baraminology must move beyond these 
biased, subjective assessments.

In contrast to other critics, Reeves suggests we 
consider a Jaccard coefficient, which, while not 
precisely a weighting scheme, actually has a biological 
justification. As he notes, character states that match 
because a character is absent may be less significant 
than when two taxa possess the same character. This 
could be biologically justified in that character states 
presumably are more easily lost than they are gained. 
Thus we might judge more significance for two taxa 
that possess a common character than for two taxa 
that lack the same character. As Reeves realized, 
however, this requires re-coding matrices, since 
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characters are polarized according to which character 
state is judged to be the “primitive” condition. Other 
binary character codings could also represent the 
possession of two different character states rather 
than presence/absence of a character. When used on a 
properly coded matrix, the Jaccard coefficient should 
be a biologically meaningful alternative metric that 
is well worth exploring.

A final note on character choice is warranted 
regarding Reeves’s cryptic comment on what he 
calls collinearity of characters. Regarding two 
characters (4 and 6) in a hypothetical matrix with 
the same distribution of character states among the 
taxa in question, he claims, “character 6 adds no 
more information about the taxon than character 4 
(and vice-versa)” (Reeves 2021b). Reeves errs here 
in three ways. First, from a purely information 
theoretic perspective, redundancy (Reeves’s “perfect 
collinearity”) unquestionably results in more 
information, if for no other reason than requiring 
something to denote the number of redundant 
copies of that character state distribution. Second, 
redundant character state distributions are the 
very basis of taxonomy in the first place. If all 
character states were distributed differently among 
taxa, then classification would be impossible. We 
recognize groups of organisms precisely because 
they possess more attributes in common (that is, 
have more redundant character state distributions) 
than that group shares with other taxa. Finally, 
even developmentally or genetically speaking, two 
characters could independently share the same 
character state distribution without being linked 
to a biological basis. Only if we measure the same 
character in different ways could we justifiably claim 
“no new information,” since characters could have 
different genetic or developmental sources.

Baraminic Distance Correlation (BDC).  
Reeves finds the BDC method statistically 
unjustifiable, concluding that it is at best “a heuristic 
technique that may help to visualize the structure 
of the data.” I largely concede to his analysis; 
however, I would also add that nearly everything 
in computational biology is heuristic. Biology is 
enormously complicated. Rigorous, comprehensive 
computational techniques are rarely available or 
practical. Thus, the pertinent question at hand 
is whether the BDC heuristic is of any value, a 
question which Reeves approaches only superficially 
with his re-analysis of one character matrix. In that 
analysis, his results are strikingly similar to my own 
conclusions using BDC. Is this a hint that BDC is 
actually not a bad heuristic, or is it merely fortuitous 
that I happened to hit upon a meaningful conclusion 
with the unreliable BDC method?  This question will 
need further exploration, which I will do below.

In addition to Reeves’s critiques, I would like to 
emphasize my own growing dissatisfaction from 
years of using the BDC method. Even my earliest 
work with BDC revealed that the method could 
produce confusing or even misleading results. 
Our work on Heliantheae revealed a complex and 
essentially uninterpretable pattern of correlations 
for what appeared to be one cluster (Cavanaugh 
and Wood 2002). Our work on fossil equids showed 
that negative correlation could occur within a single 
linear cluster (Cavanaugh, Wood, and Wise 2003). It 
was obvious then that visualization techniques like 
ANOPA or MDS were necessary to interpret the BDC 
patterns. More recently, my hominin work revealed 
that small taxon samples are particular ill-suited for 
BDC (Wood 2013, 2016). I am very sincerely glad 
to expand the statistical baraminology repertoire 
beyond BDC to include other techniques, even as I 
recognize that previous studies may continue to have 
considerable heuristic value.

Multidimensional Scaling. Reeves faults the 
use of MDS because it involves an inevitable loss 
of information and because it is not a clustering 
method. “There is still an inescapable subjectivity” to 
identifying clusters in an MDS plot, and if that were 
the purpose of the MDS plot, that would be true. 
However, this misrepresents the purpose of MDS in 
baraminology, which is to guide the interpretation of 
the BDC pattern. Distance correlation, both positive 
and negative, can occur between two taxa for reasons 
other than being in proximity. For example, in the 
case of elongate clusters, the opposite ends can 
exhibit significant, negative BDC. Likewise, diffuse 
clusters often lack any clearly negative clustering 
pattern. It is therefore necessary to further assess 
the distances to determine whether clusters observed 
in the BDC actually exist. MDS is a convenient 
means of visualizing the distances, even with the loss 
of information. Again, since Reeves proceeds to use 
MDS in his own analysis of the turtles for analogous 
reasons, one can hardly fault statistical baraminology 
for doing the same.

Bootstrapping. Reeves critiques my use of the 
bootstrap because, as he claims, the “normal approach 
would be to focus on the taxa: assume there are more 
kinds of creatures than we have employed in the 
standard BDC analysis.” According to Reeves, then, 
these analyses should resample the taxa and create 
pseudoreplicates consisting of a subset of the taxa 
with some taxa duplicated, such that the final result 
is a taxon sample with the same number of taxa as 
the original. He finds my procedure of resampling the 
characters to be reversed and invalid.  He describes an 
analogy to clustering of law students’ LSAT and GPA 
scores, and concludes that resampling characters 
would be “nonsensical.”
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Reeves’s critique of bootstrapping characters is 
quite simply wrong. Resampling characters with 
a bootstrap is a standard method of evaluating the 
sensitivity of phylogenetic or clustering hypotheses 
to the underlying character data. This is such a 
surprising and obvious error, I cannot help but 
wonder why this was not identified in peer review 
prior to publication. Because the correct use of 
bootstrapping is attested by copious phylogenetic 
literature, as I have described and cited previously 
(Wood 2008a), I find little more that I can add to this 
discussion.

Reeves’s Conclusions and Recommendations. 
Reeves closes his critique of statistical 
baraminology with a list of six conclusions and four 
recommendations. His first conclusion that character 
weighting has not been considered is false, as 
explained above. In his second conclusion, he faults 
baraminologists for not considering other distance 
metrics appropriate for different forms of data. This 
is technically correct but hardly relevant, given that 
the entire program of statistical baraminology as it 
stands is built on discrete character matrices. His 
third conclusion regarding the presence of a character 
being weighted differently than the absence of that 
character is actually warranted. I look forward to 
using Jaccard distances on character matrices that 
have been coded in a manner suitable to this metric. 
In his fourth conclusion, Reeves claims that BDC is 
formally invalid but leaves aside the question of the 
utility of BDC as a heuristic, which I will address 
below. Reeves also claims in his fifth conclusion that 
MDS results “should be treated with more than usual 
caution.” Since I do not know how to quantify “more 
than usual caution” and since Reeves uses MDS in 
his analysis of the turtles in a manner consistent 
with its use in statistical baraminology, I judge his 
concern either already met or a matter of irrelevant 
personal preference. Reeves’s final conclusion is that 
bootstrapping is not correctly applied in statistical 
baraminology, which is incorrect, as noted previously. 
Thus, four of his six conclusions are either erroneous 
or a matter of personal taste.

Reeves’s four recommendations are: 
(1) to understand better the nature of the characters

and the distances we derive from them,
(2) to understand better the assumptions on which

our statistical inferences rely,
(3) to test our assumptions and the robustness of our

conclusions, and
(4) “treat conclusions with much greater caution than

has sometimes been the case (cf. Australopithecus
sediba).”

To the first three, I can only say, of course that’s
correct, but I would add that I have worked to 
do exactly what he recommends. Using different 

character matrices for the same taxa or using a 
bootstrap does indeed test the robustness of previous 
conclusions, despite his assertions to the contrary. His 
first recommendation is simply a matter of personal 
focus: I have not deprecated nor discouraged other 
distance metrics or other forms of data. I have simply 
focused on using existing character matrices to study 
the baraminology of a variety of interesting cases.

I agree with the spirit of his final recommendation to 
treat conclusions with great caution. This is excellent 
advice for all creationist research, where results 
and evidence are routinely presented as definitively 
favoring creationist ideas and wholly incompatible 
with the conventional view. Indeed, overstating 
results of creationist research has been a criticism 
from outside the creationist community as well 
(for example, Isaac 2007). Nevertheless, I also urge 
caution here that we do not apply a double standard, 
wherein results consistent with our preconceived 
expectations are accepted without question while 
those that contradict those same expectations are 
rejected. If we are to be scientists, we must allow the 
data of creation and of scripture to form our views 
rather than forcing one (scientific data) to conform 
to shallowly considered interpretations of the other 
(scriptural data). If we fall victim to that, we have 
effectively abandoned the world of science. Science is 
not a tool to confirm our preconceived biases.

How Bad is Baraminic Distance Correlation?  

Methodological Considerations

If, as Reeves contends, BDC rests on a questionable 
statistical foundation, particularly with the application 
of the Pearson correlation coefficient and its putative 
“statistical significance,” what should we do about 
previous baraminology results?  Reeves concludes, 
“The BDC procedure can only be seen, then, as a 
heuristic technique that may help to visualize the 
structure of the data—but we have no reliable way 
of knowing whether it does or not” (Reeves 2021a). I 
submit that we do have a number of ways of evaluating 
whether the BDC heuristic reveals meaningful 
approximations of the structure of the character data.  
Classical multidimensional scaling can certainly be 
seen as one alternative method, which is exactly what 
it was introduced to be. Reeves dismisses MDS as 
inescapably subjective, but in the original application 
of the BDC/MDS method, MDS only provided a guide 
to interpreting BDC. The BDC results were used to 
determine whether the pattern apparent in MDS 
represented clustering. My experiences with all BDC/
MDS studies indicate that MDS provided a reliable 
and meaningful complement to the BDC results. In 
other words, clusters observed in BDC were apparent 
in the MDS projections in three dimensions. Can this 
subjective experience be quantified?
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Before we evaluate past results, we should 
consider several issues. First, we need to define a 
formal procedure for partitioning taxa into clusters 
in BDC results, which I propose in fig. 1. It should 
be noted here that identifying clusters differs from 
identifying holobaramins, in that a holobaramin 
could contain two or more clusters of taxa due to 
the distribution of character states among groups 
of intrabaraminic taxa, resulting in two distinct 
groups of taxa. For example, if the Camelidae do 
constitute a single holobaramin, as Wolfrom (2003) 
hypothesized, then we might expect two clusters of 
taxa representing the camels and the llamas, which 
are readily distinguished in molecular phylogenies 
(for example, Heintzman et al. 2015). Likewise, one 
should not conclude that the presence of different 
clusters alone constitutes evidence of discontinuity. 
Multiple clusters could be observed as a result of the 
biased selection of characters, as in the case of the 
aforementioned sulids (Wood 2005b).

We might also consider whether a nonparametric 
Spearman coefficient could be a better means of 
evaluating correlation, even as we acknowledge that 
this still leaves the question of statistical significance 
unresolved. Since the Spearman coefficient correlates 
ranks, it can uncover nonlinear correlations, which 
suggests that it could yield different results from 
the Pearson correlation in cases where distances 
correlate in nonlinear fashion.

We may also consider two measures of 
“clusterability” as yet another evaluation of BDC 
clustering. The dip test for unimodality (Hartigan and 
Hartigan 1985) can evaluate whether a distribution 
of distances represents a single or multiple modes. 
Distances derived from a single cluster ought to 
exhibit a unimodal distribution, but multiple clusters 
might be expected to show at least two modes 
corresponding to the intracluster distances and the 
intercluster distances. The dip test will have limited 
utility in cases where a large cluster and a small 
cluster are separated by an average distances less 
than the average distance across the large cluster 
(Adolfsson, Ackerman, and Brownstein 2019). For 
the dip test, larger values correspond to multimodal 
distributions, and a p-value can be estimated. Dip 
test here was calculated using the R diptest package.

Another clusterability measure is the Hopkins 
statistic (Hopkins and Skellam 1954). The principle 
of the Hopkins statistic is simple: Given a clustered 
distribution of points in space, any point should be 
closer to its nearest neighbor than a point randomly 
chosen from a uniform distribution will be to its 
nearest neighbor. If Wi is the distance between 
a point i and its nearest neighbor, and Ui is the 
distance between a randomly chosen point and its 
nearest neighbor, the Hopkins statistic H for a set of 

real points will be:
                      

(1)

In the case of unclustered points, ΣWi = ΣUi, and 
the Hopkins statistic will be 0.5. When points are 
clustered, ΣWi < ΣUi and H approaches 1. The Hopkins 
statistic can be calculated for the full set of points, 
or a subset can be chosen. For reproducibility of the 
statistic, the Hopkins statistic here is calculated 
from 25 replicates of the full set of taxa using the 
simple matching distance (baraminic distance). 
For each taxon i, a pseudo-taxon is generated by 
randomly shuffling the character states of taxon i. 
The distances from the pseudo-taxon to its nearest 
neighbors is then determined, and this procedure is 
repeated 25 times for each real taxon. The replicate-
based method was chosen for precise reproducibility.

To facilitate present and future baraminology 
studies, Spearman correlation BDC, medoid 
partitioning, fuzzy analysis, and the dip test and 
Hopkins statistic have been added to the existing 
suite of BDISTMDS functions in a new web service 
called BARCLAY (Baraminology and Cluster 
Analysis). BARCLAY is described in Wood (2020) 
and can be accessed at https://coresci.org/barclay.

With these considerations in mind, we can then 
compare partitions generated by the distance 
correlation methods (using either Pearson or 
Spearman correlations) to partitions derived from 
other techniques. Reeves (2021b) recommends the 
average silhouette width as an “indicator of the 
strength of a particular partition.” Silhouette widths 
range from -1 to 1, with higher values representing 
a better partition. Average silhouette widths can 
be calculated for any partition into any number of 
clusters and therefore allow us to directly compare 
clustering partitions from Pearson or Spearman 
BDC, medoid partitioning, and fuzzy analysis as well 
as clustering partitions with different numbers of 
clusters.

Another means of comparing partitions generated 
by different methods is the Rand index (Rand 
1971). The Rand index compares two partitions and 
measures the frequency with which pairs of taxa are 
placed in the same cluster in each partition. Given the 
two partitions A and B, define the following terms:

w: the number of taxon pairs that are in the same 
cluster in A and in B
x: the number of taxon pairs that are in different 
clusters in A and in B
y: the number of taxon pairs that are in the same 
cluster in A but in different clusters in B
z: the number of taxon pairs that are in different 
clusters in A but in the same clusters in B
The Rand index R is then calculated as 
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                (2)

The Rand index ranges from 0 to 1, with R = 1 
indicating perfect agreement between clustering 
partitions A and B.

The adjusted Rand index (Hubert and Arabie 
1985) is often recommended as a means of comparing 
partitions with a correction for chance associations 
of taxa in clusters; however, the permutation model 
assumes that the number and size of clusters remain 
constant. Because neither of these assumptions are 
met, the adjusted Rand index is not used.

I also use here a “cluster membership difference,” 
which I calculate as follows. Each taxon is labelled 
with a number corresponding to its cluster in partition 
A, where every member of the same cluster has the 
same number label and members of different clusters 
have different number labels. For partition B of the 
same taxa, cluster numbers are assigned such that 
the number of taxa with different cluster numbers 
in partitions A and B is minimized. The “cluster 
membership difference” is then the percentage of taxa 
which have different cluster numbers in partitions A 
and B.

As yet another measure of the efficacy of distance 
correlation, we can determine if the BDC clusters 
correspond to clades in published phylogenies 
generated from the same character matrix. Because 
some researchers publish more than one phylogeny 
for the same set of characters, all of which are treated 
as rooted by outgroup, we will count a match between 
a clade and a cluster when the membership of the 
cluster exactly matches the membership of any clade 
in any phylogeny in the original publication from 
which the character set was taken and when the 
phylogeny is treated as unrooted. Singleton clusters 
were excluded from this comparison, and allowance 
was made for taxa eliminated from the BDC analysis 
for poor taxic relevance. Note that phylogenies based 
on morphological characters are generated directly 
from character states rather than distances and 
hence provide a more independent confirmation of 
cluster membership than distance-based methods 

(e.g., medoid partitioning or fuzzy clustering).
The most recent large compendium of BDC/MDS 

studies appear in Thompson and Wood’s (2018) 
survey of Cenozoic mammals. They report 82 BDC/
MDS studies from 80 different character matrices.  
Here, the original BDC results (sans bootstrapping) 
are subjected to the partitioning procedure outlined 
in fig. 1 to generate a set of BDC clusters for each of 
the 82 analyses. Then the same 82 distance matrices 
are used to calculate BDC clusters using Spearman 
correlations, from which clusters were inferred 
using the partitioning procedure (fig. 1). Medoid 
partitions and fuzzy analyses were calculated for 
k = {n – 1, n, n + 1}, where n is the number of clusters 
identified in the Pearson-based BDC partition. 
Medoid partitions and fuzzy analyses where k was 
not possible are omitted from this study. From each 
partition (Pearson-based BDC, Spearman-based 
BDC, medoid partitioning, and fuzzy analysis), 
average silhouette values were calculated. Based 
on all of these results, the original baraminological 
conclusion was reconsidered. This conclusion could 
be one of four possible values: HB for holobaramin, 
HB? for putative holobaramin, MB for monobaramin, 
and Inc for inconclusive. The individual results, 
discussion, and conclusions for each of these 82 
analyses are presented in the Appendix.

Results

Based on the original Pearson BDC results 
reported by Thompson and Wood (2018), the newly-
proposed cluster partitioning (fig. 1) produced an 
average of 3.24 clusters per character set, with a 
strong mode of exactly three clusters observed in 40 of 
the 82 matrices.  Exactly two clusters were identified 
in eighteen matrices, four clusters in thirteen, five 
clusters in eight, and six clusters in three (fig. 2A).  
Fourteen of the 28 two-cluster matrices and 34 of the 
40 three-cluster matrices were classified as “HB” or 
“HB?” by Thompson and Wood (2018) (fig. 2C). In 
contrast, only four of the 13 four-cluster matrices, 
four of the 8 five-cluster matrices, and one of the 
three six-cluster matrices were classified as “HB” or 
“HB?” by Thompson and Wood (2018) (fig. 2E).

w xR
w x y z

�
 

� � �

Fig. 1 (page 291). The iterative process of identifying clusters from BDC results, illustrated with the Pearson BDC results 
from the Peramelidae dataset from Travouillon et al. (2014). A. In step one, identify groups of taxa in which every taxon 
shares significant, positive BDC with every other taxon. B. In step two, include in each group taxa that share significant, 
positive BDC with at least 25% of the taxa of one group but not more than 25% of the taxa of any other group. Do this 
iteratively with the most likely taxa first and expand the membership of each group accordingly. In case of ties, taxa 
should be joined with the larger group, with which it shares numerically more instances of significant, positive BDC. C. 
In step 3, any remaining taxa can be placed in the group with which they share the largest fraction of significant, positive 
BDC.  Finally, combine groups if 25% of between group taxon pairs exhibit significant, positive BDC. In case of ties, groups 
should be joined based on the larger number of instances of significant, positive BDC. Note that the researcher could 
modify the combining cutoff of 25% to a majority rule cutoff (50%) or a strict cutoff (100% only). These other cutoffs would 
modify the results of this paper, but exploration of alternative cutoff values is left for future research.
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Of the 266 clusters identified in all 82 analyses, 
47 were singleton clusters of only one taxon, and 219 
clusters contained two or more taxa. Comparison of the 
219 non-singleton clusters to published phylogenies 
revealed that 151 (68.9%) were monophyletic (see 
Appendix for full list).

Average silhouette widths for the Pearson BDC 
partitions ranged from 0.16 to 0.81, with an average of 
0.42 (fig. 2G). Average silhouette widths for Pearson 
BDC partitions classified as “HB” by Thompson and 
Wood (2018) (average 0.44) were higher than those 
classified as “Inc” (average 0.35).

When Spearman correlations are used to generate 
BDC clusters, the average number of clusters (2.59) 
is smaller than the Pearson BDC results. The 
Spearman BDC results produced 47 two-cluster 
partitions, 26 three-cluster partitions, 5 four-cluster 
partitions, and 4 five-cluster partitions (fig. 2B).  
Thirty-one distance matrices produced the same 
number of clusters in the Pearson and Spearman 
BDC results. Though the number of clusters was 
reduced, the partition assignments for each taxon 
differed by an average of 11.4% of the taxa, indicating 
a high degree of similarity between the Pearson and 
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Fig. 2. Cluster counts (A-B) and average silhouette widths (G-H) for Pearson and Spearman BDC.  Cluster counts for 
both types of BDC are shown for all clusters (A-B), clusters classified as holobaramin or possible holobaramin (HB/
HB?) (C-D), and inconclusive results (E-F).  See Appendix for full report and explanation of results.
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Spearman BDC partitions. The average Rand index 
between the Pearson and Spearman BDC partitions 
was 0.9 (median 0.93) (fig. 3).

Examining the number of taxon pairs that exhibit 
“significant” (p < 0.05) distance correlation, we find 
Spearman correlations increase instances of positive 
BDC and decrease instances of negative BDC. On 
average, the Pearson BDC results exhibited 150.6 
instances of positive BDC and 81.8 instances of 
negative BDC, but the Spearman BDC results 
showed an average of 168.8 instances of positive 
BDC and 71.0 instances of negative BDC. Spearman 
BDC produced more instances of positive BDC than 
Pearson BDC for 67 of the 82 distance matrices 
(81.7%). Spearman produced fewer instances of 
negative BDC than Pearson BDC for 45 distance 
matrices (54.9%).

Despite these differences, the average silhouette 
widths for the Spearman BDC partitions (average 
0.42) were comparable to those of the Pearson 
BDC partitions (fig. 2H). Again, we can see that 
the Spearman BDC partitions that were classified 
as “HB” by Thompson and Wood (2018) (average 
0.47) had higher silhouette widths than those 
classified as “Inc” (average 0.34). For 30 of the 82 
distance matrices, the Spearman and Pearson BDC 
partitions had the same average silhouette width. 
For 25 of the 82 distance matrices, the Pearson BDC 
partition had a higher average silhouette width than 
the corresponding Spearman BDC partition, and 
27 of the 82 distance matrices had higher average 
silhouette widths in the Spearman BDC than the 
Pearson BDC partitions.

For each distance matrix, medoid partitioning was 
calculated for the same number of clusters identified 
in the Pearson BDC partition. The average silhouette 

widths of these medoid partitions ranged from 0.13 
to 0.81 and averaged 0.4, which was slightly lower 
than the Pearson BDC average silhouette widths 
(average 0.42), but the difference was not significant 
in a Wilcoxon rank sum test (W = 3539, p = 0.56). For 
31 distance matrices, the medoid and Pearson BDC 
partitions had the same average silhouette value.  
For 20 distance matrices, the medoid partition had 
a higher silhouette value than the Pearson BDC 
partition, but for 31 distance matrices, the Pearson 
BDC partition had a higher silhouette value than 
the medoid partition. Individual clusters were highly 
similar between the Pearson BDC and medoid 
partitions. The average Rand index was 0.87 (median 
0.89) (fig. 4).

Medoid partitioning was also calculated for one 
fewer and one more cluster than present in the 
Pearson BDC partition. On average, reducing or 
increasing the cluster count yielded a slightly lower 
average silhouette width. On average, the average 
silhouette width for medoid partitioning into the 
same number of clusters detected in Pearson BDC 
was 0.40. For one fewer clusters, the average was 
0.39, and for one more clusters, the average was 
0.38. For 80% of the distance matrices, medoid 
partitioning into one greater or fewer clusters than 
the Pearson BDC cluster count yielded an average 
silhouette width that absolutely differed by only 0.1 
or lower from the medoid partition that produced 
the same number of clusters as the Pearson BDC 
clustering. Compared directly to the Pearson BDC 
partition, in only 12 cases did varying the number of 
clusters by one produce a medoid partition that had 
an average silhouette width that was greater than 
the average silhouette width of the Pearson BDC 
partition. The Pearson BDC partition had an average 
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Fig. 3. Distribution of Rand indices comparing Pearson 
and Spearman BDC partitions for all distance matrices.
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silhouette width greater than or equal to any of the 
tested medoid partition average silhouette widths in 
50 out of the 82 cases (61%).

Individual cluster similarity was also high, with 
an average Rand index between the Pearson BDC 
clusters and the medoid partition of 0.87 (median 
0.89) when the medoid partition was calculated with 
the same number of Pearson BDC clusters. In 29 
cases (35%), medoid partitioning produced exactly 
the same partition as the Pearson BDC partition.  
For only nine cases (11%), the Rand index was less 
than 0.7. The main difference between the Pearson 
BDC and the medoid partitioning was seen in 
the tendency of medoid partitioning to lump taxa 
together in bigger clusters. For example, where 
Pearson BDC produced 47 singletons for all distance 
matrices, medoid partitioning (at the same number 
of clusters observed in the Pearson BDC) produced 
only 34 singletons.

Fuzzy analysis on these distance matrices was 
more difficult than the medoid partition, because 
fuzzy analysis can only be done for cluster numbers 
up to n/2 -1, where n is the number of taxa. In cases 
where a few taxa are sorted into many clusters by 
the Pearson BDC method, fuzzy analysis could not be 
calculated. For the 82 distance matrices in the present 
study, fuzzy analysis could only be performed on 60. 
In 15 of those cases (25%), fuzzy analysis calculated 
for the same number of clusters as the Pearson BDC 
yielded a partition with an average silhouette width 
greater than the Pearson BDC partition, but 11 of 
those were also cases where the medoid partition for 
the same number of clusters as the Pearson BDC 
yielded an average silhouette width greater than the 
Pearson BDC partition. The fuzzy clustering was 
less similar to the Pearson BDC than the Pearson 
BDC clustering was to the medoid partition (average 
Rand index of 0.82 and 0.87 respectively). When 
fuzzy analysis and medoid partition were calculated 
at the same number of clusters as the Pearson BDC 
clustering, eleven distance matrices yielded exactly 
the same partitioning across all three methods.

The Hopkins statistics ranged from 0.63 to 0.93, 
with an average of 0.79 (median 0.78) (fig. 5).  While 
the average is considerably higher than the 0.5 
that indicates no clustering structure, the Hopkins 
statistics did not appear to correlate with consistency 
of different methods. Hopkins statistics were nearly 
identical for the 29 distance matrices where the 
Pearson BDC and medoid partitions were the same 
vs. the 53 distance matrices where they were not; 
both had average Hopkins statistics of 0.786. Hopkins 
statistics were different for the distance matrices 
that produced the fewest clusters in the Pearson 
BDC analysis. For the 58 matrices that yielded two 
or three Pearson BDC clusters, the average Hopkins 

statistic was 0.80, but for the 24 matrices that yielded 
four or more Pearson BDC clusters, the average 
Hopkins statistic was 0.73.

Dip test values ranged from 0.0057 to 0.12, with an 
average of 0.035. Unlike the Hopkins statistic, dip test 
values did differ when the Pearson BDC and medoid 
partitioning disagreed. For the 29 distance matrices 
where the Pearson BDC and medoid partitioning 
were identical, the average dip test value was 0.047, 
but for the 53 matrices where Pearson BDC and 
medoid partitioning differed, the average dip test 
was only 0.028. Dip test values did not differ by 
much when considering only the number of clusters 
produced by the Pearson BDC procedure. Dip test 
values averaged 0.034 for two or three Pearson BDC 
clusters vs. 0.037 for four or more clusters.

Perhaps most interestingly, dip test p-values 
were statistically significant for only twelve distance 
matrices. Those twelve had Hopkins statistics 
ranging from 0.68 to 0.93 with an average of 0.84. The 
other 70 distance matrices with nonsignificant dip 
tests had an average Hopkins statistic of 0.78. Three 
of the distance matrices with significant dip tests 
produced two Pearson BDC clusters, seven produced 
three clusters, and two produced four Pearson BDC 
clusters. Average silhouette widths for the Pearson 
BDC partitions with statistically significant dip tests 
ranged from 0.23 to 0.81 with an average of 0.52. For 
the other 70 distance matrices with nonsignificant dip 
tests, the average silhouette widths for the Pearson 
BDC partitions ranged from 0.16 to 0.7 with an 
average of 0.40. The twelve distance matrices with 
significant dip tests were also enriched in holobaramin 
identifications (see below).  Eight of the twelve were 
judged to be holobaramins or possible holobaramins 
(67%), whereas only 56% of the distance matrices 
with nonsignificant dip tests were so judged.
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When considered according to classification of 
baramins rather than mere clustering, the similarity 
is once again striking between the present results 
and those of Thompson and Wood (2018). Overall, 
the present baraminological classification matched 
that of Thompson and Wood (2018) in 54 cases 
(65.9%). Thompson and Wood (2018) recognized 
33 holobaramins (“HB”), 24 possible holobaramins 
(“HB?”), and three monobaramins (“MB”).  For 22 
of the distance matrices, they concluded that the 
results were inconclusive (“Inc”). In the present study 
when all the results from Pearson BDC, Spearman 
BDC, medoid partitioning, and fuzzy analysis 
are considered together (see discussion in the 
Appendix, available online), the original conclusions 
are modified slightly by increasing the number of 
inconclusive results. Here, 29 holobaramins and 18 
possible holobaramins are recognized, and 32 distance 
matrices are considered inconclusive. In 24 cases, 
the original holobaramin conclusion is confirmed. 
Five possible holobaramins (“HB?”) in the original 
study were “upgraded” to holobaramins (“HB”), but 
six holobaramins (“HB”) in the original study were 
“downgraded” to only possible holobaramins (“HB?”) 
in this study. Nine possible holobaramins (“HB?”) 
were changed to inconclusive in the present study. 
Three holobaramins (“HB”) from the original study 
were here classified as inconclusive. Three of the 
original inconclusive results from the original study 
were changed to possible holobaramins (“HB?”). The 
full comparison of these conclusions are shown in 
table 1. In the original study, 69.5% of the distance 
matrices yielded a conclusion of holobaramin or 
possible holobaramin, but in the present study, only 
57.3% of the distance matrices yielded a conclusion 
of holobaramin or possible holobaramin. Still, nearly 
two thirds of conclusions (54, 65.9%)) were unchanged 
between the previous and present study.

We can compare the 47 distance matrices classified 
as “HB” or “HB?” to the 32 distance matrices 
classified as inconclusive (“Inc”) in the present 
study. We find that the dip test varies substantially 
between the two groups, with an average of 0.039 for 
the HB/HB? matrices and 0.026 for the inconclusive 
matrices. Curiously, the Hopkins statistic was nearly 
the same (0.79 average for HB/HB? and 0.8 average 
for inconclusive matrices). The average silhouette 
widths of the Pearson BDC clustering tend to be 
higher on average for the HB/HB? matrices than 
the inconclusive matrices (averages 0.44 vs. 0.38). 
On average, HB/HB? distance matrices came from 
character sets with a higher number of characters 
(mean 76.6) and a lower number of OTUs (mean 
20.6) than the inconclusive distance matrices (means 
63.8 and 28.3 respectively).

Discussion: Expanding the Toolkit 

of Baraminology Techniques

According to Reeves (2021a, b), BDC is formally 
invalid, and its utility as a heuristic is unknowable. 
To assess whether the BDC heuristic is useful, I 
examined a previously published set of BDC analyses 
to determine the consistency of Pearson BDC 
with published phylogenies, BDC calculated with 
Spearman correlations, medoid partitioning, and 
fuzzy analysis. I found a good agreement between all 
methods tested. Compared to published phylogenies, 
Pearson BDC clusters were monophyletic in nearly 
70% of cases. Compared to Spearman BDC, the 
Pearson BDC clusters matched exactly in 31 of 
82 cases (37.8%), and the similarity between all 
Spearman and Pearson BDC clusters was high, 
with a Rand index of 0.9. When calculated for the 
same number of clusters as the Pearson BDC, the 
medoid partitioning produced identical clusters to 
the Pearson BDC in 29 cases (35.4%) and the average 
Rand index was 0.87, once again revealing a very 
close match between most Pearson BDC and medoid 
partitions. When calculated for the same number of 
clusters as the Pearson BDC, fuzzy analysis produced 
the same clusters as the BDC partition in only 15 
(25%) out of the 60 cases where fuzzy analysis could 
be applied, but once again the average Rand index of 
0.82 was very high.

We can also assess cluster agreement using 
the average silhouette width, which evaluates 
clusters independently of the method by which they 
are generated. Of the four partitioning methods 
evaluated here, Spearman BDC produces the highest 
average silhouette widths (mean 0.42), and medoid 
partitioning produces the lowest (mean 0.40), but the 
difference is slight. Pearson BDC performs nearly as 
well as the Spearman BDC (mean 0.416 vs 0.417) 
and fuzzy analysis (mean 0.416 vs. 0.414).

Considering these results, we can see that Pearson 
BDC, the method used in dozens of published 
baraminology articles, performs at least as well as if 
not better than medoid partitioning or fuzzy analysis, 
which were recommended by Reeves to replace BDC. 
Therefore, rather than merely criticizing BDC, 
future research ought to determine why Pearson 
BDC performs so well, given that it violates certain 
methodological assumptions. As things stand, it 
would seem that past results need not be questioned 
or discarded only because they are based in part or 
in whole on Pearson BDC. Likewise, my previous 
recommendation that Pearson BDC be deprecated in 
favor of Spearman BDC (Wood 2020) was premature 
and unwarranted. 

Just as important as the general reliability of 
Pearson BDC is the strong disagreements between 
the methods. In this sample of 82 studies, I found 
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Table 1. Comparison of baraminological conclusions from Thompson and Wood (2018) and the present study. See 
Appendix for explanation of these conclusions and complete list of citations.  HB = holobaramin, HB? = possible 
holobaramin, MB = monobaramins, Inc = Inconclusive.

Family Citation (see Appendix for complete citation) Thompson and Wood (2018) Present Study
Ornithorhynchidae Rowe et al. 2008 HB? HB?

Paramelidae Travouillon et al. 2014 Inc Inc

Palorchestidae Black 2008 HB HB

Thylacoleonidae Gillespie 2007 HB? Inc

Hypsiprymnodontidae Bates et al. 2014 HB HB

Macropodidae Prideaux and Tedford 2012 HB? Inc

Macropodidae Kear et al. 2007 HB HB

Pseudocheirinae Springer 1993 HB HB

Phascolarctidae Black et al. 2012 HB HB

Didelphidae Voss and Jansa 2009 HB? Inc

Caenolestidae Ojala-Barbour et al. 2013 MB MB

Hathliacynidae Forasiepi et al. 2006 HB? MB

Dasypodidae Herrera et al. 2017 HB HB?

Glyptodontidae Zurita et al. 2013 HB HB

Myrmecophagidae Gaudin and Branham 1998 HB? HB

Pseudorhyncocyonidae Hooker 2013 HB? HB?

Ochotonidae Fostowicz-Frelik et al. 2010 Inc Inc

Leporidae Fostowicz-Frelik 2013 Inc Inc

Aplodontidae Hopkins 2008 Inc Inc

Castoridae Rybczynski 2007 HB HB?

Cricetidae Maridet and Ni 2013 Inc Inc

Anomaluridae Sallam et al. 2010 HB HB

Caviidae Pérez and Vucetich 2011 HB? Inc

Octodontidae Verzi et al. 2013 Inc Inc

Echimyidae Carvallo and Salles 2004 Inc Inc

Palaeoryctidae Rankin and Holroyd 2014 Inc Inc

Manidae Kondrashov and Agadjanian 2012 HB HB

Hyaenodontidae Polly 1996 Inc HB?

Felidae Holliday 2007 HB HB

Machairodontinae Christiansen 2013 HB Inc

Barbourofelinae Morlo et al. 2004 Inc HB?

Ursidae Abella 2012 HB? Inc

Otariidae Churchill et al. 2014 HB Inc

Odobenidae Boessenecker and Churchill 2013 HB? HB?

Mustelidae Prevosti and Ferrero 2008 HB HB?

Mephitinae Wang et al. 2014 HB Inc

Procyonidae Ahrens 2012 Inc Inc

Chrysochloridae Asher et al. 2010 HB HB

Erinaceidae He et al. 2012 HB HB

Talpidae Sánchez-Villagra et al. 2006 HB HB

Nyctitheriidae Manz and Bloch 2015 HB? Inc

Soricidae Hugueney and Maridet 2011 HB? HB

Rhinolophidae Hand and Kirsch 2003 HB? Inc

Mormoopidae Simmons and Conway 2001 MB Inc

Phyllostomidae Wetterer et al. 2000 Inc Inc
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Picrodontidae Burger 2013 HB HB

Plesiadapidae Burger 2013 HB HB

Lemuridae Herrera and Dávalos 2016 HB HB

Lepilemuridae Herrera and Dávalos 2016 HB HB

Loridae Masters et al. 2005 Inc Inc

Carpolestidae Bloch et al. 2001 HB? HB?

Omomyidae Ni et al. 2004 HB HB?

Cebidae Garbino 2015 HB? HB?

Cebidae Schrago et al. 2013 Inc HB?

Orycteropodidae Lehmann 2009 Inc Inc

Louisinidae Hooker and Russell 2012 Inc Inc

Hyopsodontidae Williamson and Weil 2011 Inc Inc

Didolodontidae Gelfo and Siegé 2011 HB? HB?

Suidae Orliac et al. 2010 HB HB?

Hippopotamidae Boisserie et al. 2010 HB? HB?

Anthracotheriidae Rincon et al. 2013 Inc Inc

Camelidae Scherer 2013 HB? Inc

Moschidae Sanchez et al. 2010 MB MB

Cervidae Lister et al. 2005 Inc Inc

Notohippidae Cerdeño and Vera 2010 Inc Inc

Leontiniidae Schockey et al. 2012 HB HB

Toxodontidae Forasiepi et al. 2015 HB HB

Interatheriidae Reguero et al. 2003 Inc Inc

Interatheriidae Hitz et al. 2006 HB HB

Hegetotheriidae Billet et al. 2009 HB HB

Astrapotheriidae Vallejo-Pareja et al. 2015 HB HB

Carodniidae Antoine et al. 2015 HB? HB

Palaeotheriidae Danilo et al. 2013 HB HB?

Brontotheriidae Mihlbachler 2008 HB? Inc

Chalicotheriidae Bai et al. 2010 HB? HB?

Rhinocerotidae Becker et al. 2013 Inc Inc

Lophiodontidae Robinet et al. 2015 HB HB

Sirenia Sorbi 2008 HB HB

Desmostylidae Beatty 2009 HB? HB?

Procaviidae 6HLႇHUW�HW�DO������ HB HB

Gompotheriidae Cozzuol et al. 2012 HB? HB

Elephantidae Ferretti and Debruyne 2010 HB? HB
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the baraminological conclusions changed from 57 to 
47 holobaramins or possible holobaramins (decrease 
of 17.5%) and from 22 to 32 inconclusive results 
(increase of 45.5%). Thus, while the results overall 
still favor recognizing holobaramins by statistical 
baraminology, consideration of additional clustering 
techniques unsurprisingly increases the uncertainty 
of some results.

There were twelve (14.6%) distance matrices 
where the new evidence from the Spearman BDC, 
medoid partitioning, and fuzzy analysis warranted 
changing the original researchers’ conclusion from 
holobaramin or possible holobaramin to inconclusive.  
In the case of the Didelphidae from a character set 
used by Voss and Jansa (2009), there was very little 
agreement between the different clustering methods, 
hence justifying viewing the original results with 
much greater uncertainty (Appendix, 56-61). In the 
case of the Mephitidae using a character set from 
Wang, Carranza-Castañeda, and Aranda-Gómez 
(2014), the Pearson BDC produced three clusters 
with an average silhouette width of 0.34, but the 
medoid partition at three clusters had a considerably 
better average silhouette width of 0.43. The fuzzy 
analysis at three clusters differed from the medoid 
partition by only a single taxon but still had an 
average silhouette width of 0.43 (Appendix, 211-216).  
Since the cluster analysis methods produced better 
clustering than the Pearson BDC, we are justified in 
questioning the original conclusions.

As noted, substitution of Spearman correlations 
for Pearson results in an increase in “significant” 
positive correlation and a decrease in “significant” 
negative correlation. This is to be expected, since 
Spearman uses ranks and therefore can detect 
nonlinear correlations. As a result, Spearman-based 
BDC produces fewer clusters than Pearson BDC 
in 48 of 82 cases (58.5%). In only three cases did 
Spearman-based BDC produce more clusters than 
the Pearson BDC. Additionally, since discontinuity 
is inferred from patterns of “significant,” negative 
BDC, Spearman would be ill-suited for inferring 
discontinuity in future studies due to the dearth of 
negative BDC.

Because medoid partitioning works by minimizing 
the distance between a cluster’s centrally-located 
medoid and all other members of that cluster, medoid 
partitioning works best with globular or spherical 
clusters. Since we have no reason to expect that taxa 
will be distributed in a globular fashion (whether 
they belong to the same baramin or not), the utility 
of medoid partitioning may be limited. For example, if 
future studies apply medoid partitioning to an elongate 
cluster of points (for example, Cavanaugh, Wood, and 
Wise 2003), we would expect the mostly continuous 
linear form to be divided into multiple clusters.

Of all the methods presented here, fuzzy analysis 
produced the most divergent partitions. Compared 
to medoid partitioning and Pearson BDC with the 
same number of clusters, fuzzy analysis produced 
a partition identical to Pearson BDC only 15 times 
and identical to medoid partitioning only 19 times. 
In contrast, Pearson BDC and medoid partitioning 
produced the same clusters 26 times. Thus, in 
future work, researchers should consider using and 
interpreting fuzzy analysis with care, recognizing 
that differences observed using fuzzy analysis may 
be methodological artifacts.

Most interesting of all, the Hopkins statistic and 
dip test did not strongly support the presence of 
clusterability in the distance matrices. The present 
implementation of the Hopkins statistic does not 
follow the recommendation of sampling only 5–10% 
of the taxa (since there are so few taxa), and therefore 
the statistical significance of the statistic cannot be 
estimated from a beta distribution. As noted above, 
the Hopkins statistic ranges from 0.5 to 1, with higher 
numbers indicating more deviation from a random 
distribution of points. Since the average Hopkins 
statistic was 0.79, we may infer that the average 
distance matrix here does contain clusters. This 
would be consistent with the observation that none 
of the distance matrices yielded only a single Pearson 
BDC cluster, even though a single cluster is a possible 
outcome. Also interesting is the observation that the 
average Hopkins statistic was higher for distance 
matrices with fewer clusters. Since the Hopkins 
statistic compares nearest neighbor distances 
between real points and a set of points drawn from 
a uniform distribution, concentrating real points 
into a small number of clusters ought to produce a 
higher Hopkins statistic than spreading the same 
number of points out in a greater number of clusters. 
In future research, it might be possible to estimate 
the significance of any Hopkins statistic empirically 
through Monte Carlo simulations.

The fact that the dip test revealed so few instances of 
significant clustering is not surprising, given the type 
of distance matrices in the present study. In previous 
simulation research, the dip test performed worst 
when presented with a single cluster and multiple 
outliers (Adolffson, Ackerman, and Brownstein 
2019), even though it was generally a very reliable 
clusterability statistic. Thompson and Wood (2018) 
selected their set of mammal character sets precisely 
on that characteristic: a good sample of ingroup taxa 
with a smaller sample of outgroup taxa.  Add to that 
the small number of taxa (average of 23), and we 
might expect very few of these distance matrices to 
exhibit clusterability as measured by the dip test.

Indeed, we can evaluate this with very simple 
simulations (fig. 5). For a two dimensional cluster 
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of twenty points with x and y coordinates randomly 
drawn from a normal distribution (mean 0, standard 
deviation 1), we can add one additional point at 
coordinates x = 5, y = 5, which represents the outlier 
or singleton cluster. Visually, this 2D array of points 
appears to be a cluster with an individual point at 
noticeable distance (fig. 6), but the Euclidean distances 

between all 21 points appears to be a unimodal 
distribution. The dip test bears this out, revealing 
that the distance distribution is not clusterable.  In a 
sample of 100 such simulations, only once did the dip 
test produce a statistically significant result.  Thus, 
the dip test appears to have limited applicability in 
most baraminological studies.
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Fig. 6. Sample of three simulations showing a normally distributed, two-dimensional cluster, wherein 20 x and 
y coordinates are drawn randomly from a normal distribution with mean of 0 and standard deviation of 1.  The 
outgroup or singleton taxon is shown at coordinates x = 5, y =5.  For each set of 21 points, the distribution of 
Euclidean distances between the points are also shown, along with the dip test statistic and p-value.
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Based on these results, we may consider three 
issues for future research. First, baraminology studies 
absolutely must consider more than one method of 
clustering. The BDC method (Pearson or Spearman) 
has the advantage of indicating a specific number of 
clusters present, while medoid partitioning and fuzzy 
analysis must be used to confirm these results, with 
the recognition that fuzzy clustering often disagrees 
with other methods. Second, the use of clusterability 
statistics warrants further research before overly 
relying on these to indicate the presence of a possible 
holobaramin. Third, to test the discontinuity 
hypothesis, statistical baraminology methods must 
be applied at multiple taxonomic levels.

Additional questions raised by Reeves remain 
unanswered in this present study.  Among them are 
the efficacy of the bootstrap when applied to the new 
methodology. Since bootstrapping has been shown 
to be a valuable assessment of the robustness of 
phylogenetic and baraminology hypotheses, its use 
in cluster analysis ought to be explored as well.

Reeves also reveals an aversion to conclusions 
about the human holobaramin, which despite his 
concern with the technical legitimacy of statistical 
baraminology, he never quantifies. Nonetheless, 
these new methods ought to be applied to hominin 
fossil character matrices to determine if any previous 
conclusions should be modified in light of these new 
techniques. This work is presently ongoing, and I 
anticipate publication of the preliminary results 
within a year’s time.

In conclusion, while the Pearson BDC as a heuristic 
is not as dubious as Reeves implies, the addition 
of cluster analysis techniques unquestionably 
strengthens the statistical baraminology toolkit. 
While some of Reeves’s claims were faulty, we 
definitely owe him a debt of gratitude for pushing 
statistical baraminology into new methodological 
territory.
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