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Abstract 
Wood and co-workers (Cavanaugh and Wood 2002; Robinson and Cavanagh 1998; Wood 2005; 

Wood and Murray 2003) have pioneered the application of some statistical methods to the taxonomy 
of various biological organisms, an approach that has become known as statistical baraminology 
(SB). For example, in Wood (2005), the report of an analysis of patterns of morphological characters 
in 30 turtle species, there appeared to be two distinct groups. From a statistical perspective, however, 
these methods are flawed in several ways, as was argued in an earlier paper Reeves (2021), where the 
question as to whether a conventional statistical approach—cluster analysis—could provide a more 
securely based alternative was left open. Part 2 of this research, reported herein, presents a formal 
reanalysis of the turtle data using some well-known clustering techniques. 

The results suggest that the original conclusion in Wood (2005)—that there are two distinct clusters—
can be supported, as well as the detailed cluster composition. Nevertheless, clustering techniques, 
being more soundly based, should be preferred. In addition, they also enable the identification of how 
well individual taxa fit into their clusters by means of silhouette plots. Some further suggestions are made 
for the evaluation of cluster stability that have a sounder statistical basis than the type of bootstrapping 
commonly applied in SB. Finally, answers to some important questions concerning the original dataset 
are still needed, and these are used to highlight some important conceptual and practical issues within 
SB research. 
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Introduction 
In Wood (2005, 71), he reported, inter alia, on the 

analysis of a database of 30 turtle species (originally 
published in Shaffer, Meyland, and McKnight (1997), 
for each of which 115 morphological characters have 
been used to distinguish the species from each other. 
The objective was to assign species to reasonably 
homogeneous groups on the basis of these characters, 
and a method known as “baraminic distance 
correlation” (BDC) was used in an attempt to identify 
what are termed baramins, or “created kinds,” on the 
hypothesis of a polyphyletic development of biological 
organisms, rather than the standard monophyletic 
“tree of life” associated with Darwinism. In Reeves 
(2021), I argued that BDC is not securely based on 
a principled statistical methodology, and should be 
abandoned. In this paper, taking the turtle data as 
an illustrative example, I report on an alternative 
approach, and discuss some of the conceptual 
and practical issues that arise. From a statistical 
perspective, regardless of the underlying motivation, 
statistical baraminology (SB) is simply a problem 
of clustering. The generic clustering problem can be 
described as follows: 

We have a set of data comprising measurements of 
p variables for each of n objects xi, where xi is a row 

vector (xi1, …, x
ip
). We can denote the data set by

A wide variety of clustering techniques is available 
in the statistical literature.1 Some are based on the 
raw data, but most make use of an n-dimensional 
dissimilarity matrix 

The notation dij is shorthand for a function  
d(xi, xj), which measures the dissimilarity or 
“distance” between the objects xi and xj. (Theoretical 
concepts associated with the idea of distance are 
outlined in Reeves (2021, Appendix A). Note that in 
practice the distances are nearly always symmetric 
(i.e., dij = dji), so only the upper or lower triangle of 
this matrix needs to be stored. 

The objective is to assign the objects to one of m 
clusters, so that “close” objects belong to the same 
cluster, while “distant” objects are in different 
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1 It is only fair to point out that clustering via a dendogram was suggested early in the history of statistical baraminology—in 
Robinson and Cavanaugh (1998), using simple matching for distance. But dendograms introduce a further element of subjectivity 
to the clustering process. Subsequent SB developments went in a different direction, in any case.
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clusters. Generally, in statistics we decide such 
questions by invoking some principle or criterion 
whereby “good” and “bad” assignments can be 
distinguished. (It is the lack of such a principle that 
makes BDC problematic.) In the case of clustering, a 
natural principle is to use a “minimum total distance” 
criterion: if the set of objects in cluster k is denoted 
by Ck, we search for assignments that minimize an 
objective function 

(1)
where f is some function of the interobject distances. 
The number of partitions of n objects into m(< n) 
groups such that each group has at least one member 
is given by the Stirling number of the second kind 

This is a very large number, even for moderate 
values of n and m (e.g., S(10, 4) ≈ 4.5 × 1010), so 
enumeration of all possible partitions is impossible, 
and heuristic methods are necessary to find a quasi-
optimal partition. Furthermore, as the value of m is 
unknown a priori, several trials with different values 
of m are usually undertaken. 

The nature of f in Eqn. (1) depends on the type 
of data contained in X. For continuous numerical 
variables, the most commonly used function is the 
square of the distance between the objects (i.e., the 
ℒ2 norm (Reeves (2021, Appendix A), weighted by 
the relevant cluster size. It can be shown (see Späth 
1985, Chapter 2, for example) that this is equivalent 
to minimizing the sum of squared distances from the 
centroid of each cluster, i.e. 

where     is the centroid of cluster k. The centroid, of 
course, only rarely coincides with any actual point, 
but need not be computed separately because of the 
equivalence of equations (1) and (2) in this case. 

This is less satisfactory when some or all of the 
variables are ordinal or nominal. (There is a discussion 
on variable types and their appropriate methods 
of statistical analysis in Reeves 2021 Appendix B.) 
In such cases it is hard to assign any meaning to 
the idea of a centroid, but they may be replaced by 
“medoids” (the medoid is the vector whose elements 
are the middle values of the sorted elements of the 
vectors belonging to Ck). These are clearly more 
meaningful as centers for nominal data as they do 
coincide with actual values; moreover, if the function 
f in equation (2) is an identity function instead of the 
square of the distances, and the distance is based on 
the ℒ1 norm, it can be shown (Späth 1985, Chapter 6) 
that the medoids do in fact minimize 

where     is the medoid of cluster k. Not only is this 
appropriate for non-quantitative data, but it is also 
more robust and less influenced by outliers. 

One of the most comprehensive studies of clustering 
techniques is that of Kaufman and Rousseeuw (1990), 
many of whose algorithms have been implemented 
(Struyf, Hubert, and Rousseeuw 1997) in recent 
versions of the statistical computing languages S-Plus 
and R, which therefore make a convenient starting 
point for any exploration of the data. 

Distance metrics 
Central to the clustering problem is the definition 

of a suitable distance metric, so that we can assign 
a precise meaning to the idea that (say) object x is 
closer to y than to z. (For background on distance 
metrics and examples of their use, see Reeves 2021, 
Appendices A and C). For convenience, two of the 
metrics most commonly used are reintroduced below. 

The simple matching coefficient 
This uses a simple count of the number of cases in 

which the two objects do not coincide. If xj (resp. yj) 
is the value of the jth variable for the object x (resp. 
y), this is 

where the notation [expr] denotes the value 1 if the 
logical expression expr is true, and 0 if it is false.  
Normalizing, the “distance” between x and y becomes 

For the specific case of binary variables, there is 
another way of writing this which points the way 
towards alternative measures:

where ˄ is the standard symbol for logical “and”. 

The Jaccard coefficient 
In the case of binary variables in particular, 

the presence of a character (xj = 1) may be more 
significant than its absence (xj = 0). For asymmetric 
cases such as this, the distance measure preferred is 
often the Jaccard coefficient: 

These formulae can also be generalized to the non-
binary case if necessary. 
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Distances using daisy 
A procedure called daisy is available in S-Plus and 

R to compute a variety of distances, including the 
simple matching and Jaccard cases. It copes with 
mixed data where some variables are non-binary by 
normalizing such components to lie in the range [0, 1]. 
It deals with missing values, too, by simply excluding 
them from the counts in both numerator and 
denominator. (This assumes that the denominator 
does not become zero.) It does not, however, compute 
other metrics such as the Dice coefficient, nor does 
it enable the possibility of asymmetric non-binary 
variables. Should such cases occur, it might be 
necessary to develop a specific function. 

Cluster Analysis of the Turtle Dataset 
In Wood (2005) the data were analyzed by some 

novel methods based on the concept of distance 
correlation, using simple matching to define distance. 
The dataset comprises 30 taxa and 115 characters; 
as some of the characters are sparsely distributed, 
a relevance value of 0.9 was used to reduce the 
number of characters to 93. (A preliminary analysis 
with a relevance value of 0.95 eliminated another 33 
characters, but—in accordance with the belief in the 
importance of a large holistic set of characters—this 
was deemed to be too drastic.) For a cluster analysis 
it is unnecessary to eliminate such data explicitly, as 
missing values are handled by default in the daisy 

function. (See the discussion in Conceptual and 
Practical Issues, however.) There are some serious 
questions about the validity of the BDC procedure, 
as discussed in Reeves (2021), so this paper explores 
cluster analysis as an alternative. 

Clustering with pam 
There are many possible clustering methods 

that are based on sound statistical principles. One 
that is relevant to the type of data commonly found 
in taxonomical problems is partitioning around 
medoids (pam), which is available in S-Plus and 
R. This procedure has the additional benefit of in
providing so-called silhouette plots. These compare
the average distance of a point x to the other points
within its cluster [        , say] to its average distance
to points in its second-best cluster [      , say]. The
normalized width

lies in the range [−1, 1], and measures how well x 
fits into its cluster. In this way, individual “outlier” 
objects are easily identified by a visual display of 
silhouette widths in descending order. The average 
silhouette width of a cluster is also an indicator of the 
strength of a particular partition. 
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Following the computation of the D matrix from 
the turtle dataset, using daisy to produce the simple 
matching distance, the pam procedure was applied, 
with the results shown in fig. 1. The 2D visualization 
is obtained by first carrying out a multidimensional 
scaling (MDS), and then plotting the first two 
components against each other. Although we should 
bear in mind the caveats expressed in Reeves (2021) 
against interpreting MDS too enthusiastically, it 
would appear from both plots that Proganochelys, 
although assigned to cluster 1, is substantially 
different from any other point in that cluster. In 
the case of cluster 2 the most out-of-place taxon is 
Meiolania.

3 clusters 
In the case of 3 clusters, the results are shown in fig. 

2. The third cluster is a small one, comprising three
very similar taxa. As a result, group 2 is now much
more compact, but group 1 is the same as before, with
Proganochelys remaining an outlier. The average
silhouette width s has actually decreased, suggesting
that m = 2 is probably to be preferred to m = 3 (Kaufman
and Rousseeuw 1990). That the cluster memberships
also coincide with those reported in Wood (2005),
despite the flaws in the BDC methodology, may
assuage some of the doubts as to the validity of the
cluster compositions produced therein.

An attempt with 4 clusters produced a further fall 
in s, so there is little support for the idea that there 
are 4 groups. 

Jaccard metric 
As mentioned above, there is often merit 

in treating coincident values of two variables 
differently, in terms of constructing a distance, 
depending on whether the coincidence is one of 
presence or absence of a character. As nearly all of the 
variables in the turtle dataset are dichotomous, this 
is an area that invites exploration. (See, however, 
the discussion in Conceptual and Practical Issues.) 
Accordingly, the distances were re-calculated using 
daisy with the asymmetric setting. When pam was 
applied, similar results were obtained for m = 2, as 
displayed in fig. 3. 

For the case m = 3, there are some interesting 
differences in cluster composition, as a comparison 
between figs. 2 and 4 demonstrates. The average 
silhouette width in fact suggests that 2 clusters are 
sufficient for describing the taxonomic structure—
the fact that there is a slight increase in the average 
value of s is due to the fact that the 3rd cluster is 
actually Proganochelys on its own. And while the 
taxa contained in each cluster are the same as with 
the simple matching distance, there are some notable 
differences in the rank ordering of the taxa within 
the second (larger) cluster. The most substantial 
change involves Adocus, which moves from 3rd most 
well classified in the case of simple matching to 7th 
when the Jaccard coefficient is used. Despite this 
and other changes in ordering, however, the overall 
agreement between the ranks is very good, with a 
rank correlation of 0.95. 
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Fuzzy Clustering 
Another approach that is becoming increasingly 

popular is the use of fuzzy clustering. In this case, 
rather than assigning a point unequivocally to one 
cluster, it is given a membership value 

uik satisfying the requirements 
That is, uik indicates the degree to which object 
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i “belongs” to Ck. This idea is implemented by a 
procedure called fanny in S-Plus and R. Figs. 5 and 
6 display the results of applying fanny with simple 
matching. 

It should be noted that in order to obtain such 
plots, the fuzzy clusters must first be “defuzzified” 
into their “crisp” or “hard” form, where each object i is 
assigned to the cluster k for which uik is largest. This 
would not necessarily coincide with the clustering 
produced by pam, although it does in the case m = 2. 
The case m = 3 is interesting: although a third cluster 
is assumed in the fuzzy procedure, the crisp version 
collapses to 2 clusters, providing further evidence 
that a 3-cluster solution is implausible. 

Jaccard metric 
As with pam, it is also possible to use fanny with 

the Jaccard distance. The results of this investigation 
are shown in figs. 7 and 8. 

Again, for m = 2 the structure revealed on 
converting from fuzzy to crisp clusters is identical 
to that found in the corresponding case of pam, 
with the same silhouette rank ordering within each 
cluster. The case m = 3 again collapses to 2 clusters 
on defuzzification, although the silhouette width for 
Proganochelys is negative, which suggests it really 
does not belong to either cluster and should be 
treated as a distinct taxon. 

Extensions 
The analysis reported above has suggested that the 

inference of Wood (2005) that the turtle taxa comprise 

two distinct groups is valid. There is, however, a 
distinct lack of statistical principles in some of the 
methodology used in that earlier research, and those 
findings may therefore be merely fortuitous. Given 
the firmer statistical foundations for clustering 
techniques such as pam and fanny than for baraminic 
distance correlation, clustering algorithms would 
seem safer for analyses of taxonomic datasets. 

For the turtle data, there is on the whole more 
statistical support for a 2-cluster model than for 3 
or 4 clusters, in that the average silhouette widths 
are mostly larger in the case m = 2. (Using pam 
with m = 3 is an exception, where the fossil species 
Proganochelys is revealed as an outlier, in a cluster 
of its own.) The fuzzy approach adds weight to this 
interpretation, as the crisp clusters produced number 
2 even when a 3-cluster fuzzy model is fitted. There 
is little doubt as to the group membership of nearly 
all taxa, although Proganochelys is really unlike 
anything else. Whether the use of the Dice or other 
distance measures adds anything to the discussion is 
a possible extension to this research; it would entail 
writing a simple function to replace daisy in applying 
pam and fanny to the problem. There are several 
other possibilities for extending the analysis. Some of 
these are discussed in outline below. 

Missing values 
There are considerable gaps in some parts of the 

turtles database. For some objects, there are many 
variables whose values are either not known, or 
are not considered relevant. In terms of distance 
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Fig. 5. A 2D visualization of the clusters obtained from fanny for m = 2 using the simple matching distance metric.
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calculations, variables with missing values are 
simply disregarded by daisy, which may lead to 
a loss of confidence in the validity of a particular 
distance. 

This is, of course, a familiar problem in many 
areas of data analysis, and a variety of techniques 
have been suggested for filling in the gaps in a data 
matrix. For example, it is possible to fit a linear model 

of the dependence of values of one variable on values 
of others for which a complete record is available. (In 
cases of dichotomous variables, a logistic regression 
model would be more appropriate, giving rise to 
a value that can be read as a probability.) Another 
possibility is to use k-nearest neighbour methods to 
infer missing values. Neither has been attempted in 
the analysis reported here. 
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Fig. 6. A 2D visualization of the clusters obtained from fanny for m = 3 using the simple matching distance metric.
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Bootstrapping 
One of the problems in cluster analysis is often 

the difficulty of assessing the degree of robustness of 
the groups that result. Would things have been very 
different if certain objects (taxa) had been excluded 
from the analysis? 

For example, in the turtle data set, the fossil species 
Proganochelys, which is difficult to fit into either of 
the two major groups identified, may create a bias 
in their composition simply because it is included. 
An obvious approach is simply to repeat the analysis 
with this species excluded, and decide to which (if 
any) of the resulting clusters it can be assigned. But 
then why not examine the effect of leaving out every 
object, one at a time? We can then build up a picture 
of the robustness of the assignments. This procedure 
is often called a jack-knife. The generalization of this 
procedure is known as cross-validation, but while 
the amount of computation required is acceptable 
if restricted to single objects, it becomes prohibitive 
to extend the analysis to every pair, every trio, etc. 
In general, cross-validation tends to be used by 
selectively sampling the pairs, trios etc. 

An alternative that has become almost ubiquitous 
in many areas of statistics is to use the bootstrap 
(Efron and Tibshirani 1993), where the set of taxa 
is sampled with replacement to create a set of 
“pseudoreplicates” the same size as the original 
sample. The issue here is that each pseudoreplicate 
contains many pseudo-taxa, which are merely 
clones of real taxa. Asymptotic probability theory 
can be used to show that about 63% of the taxa in 

a pseudoreplicate occur as clones, so bootstrapping 
would induce a large degree of collinearity (see 
Conceptual and Practical Issues for a discussion of 
the problems this causes). Bootstrapping has also 
been applied in a rather idiosyncratic way in SB. 
For the reasons delineated in Reeves (2021), the SB 
approach to bootstrapping is unlikely to satisfy the 
underlying assumptions necessary for applying it. 

Discussion 
It should be noted that, notwithstanding the 

criticisms aimed at the BDC-based methodology in 
Reeves (2021), the results of the cluster analysis here 
are the same. Does this mean that BDC is justified 
after all? Not so: the ad hoc approach of BDC still has 
no valid statistical foundation, so any conclusions 
reached will always be subject to debate, criticism, 
or even (from evolutionists) ridicule. Furthermore, 
cluster analysis can be carried out by standard 
statistical software (available for free in the case of 
R) with the capacity for using a much wider range 
of distance metrics and specific techniques. It is 
also likely that conclusions drawn from a cluster 
analysis would gain more credence from a skeptical 
anti-creationist majority than those obtained by 
using novel methods used nowhere else. And cluster 
analysis is only one example of a growing set of 
“unsupervised learning” methods that have been 
developed in the last 30 years, many of which will 
also be applicable—so why not explore them? 

It would still be a mistake, however, to assume 
that the only change needed for SB research is to plug 
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a dissimilarity matrix into some R functions instead 
of BDIST. Cluster analysis still has some subjective 
elements—as stressed above, finding a globally 
“optimal” clustering is not a realistic aim. Thus, 
the goal that Wood (2011) mentions of being able 
to ‘‘assign statistical probabilities to the differences 
that divide [groups] and to the similarities that 
unite [them]’’ is unattainable. For example, while 
silhouette plots are handy visual aids, we cannot 
start attributing “P-values” to them. 

Conceptual and Practical Issues 
Applying statistical methodology should never be 

done in a routine way. Nothing is more important 
than engaging properly with the data, especially 
when the data come from secondary sources. Going 
to the source paper Shaffer, Meylan, and McKnight 
(1997) for the turtle analyses is actually a salutary 
example of some of the problems that can arise. Two 
things become clear: 
1. There is an older source for the first 39 characters

listed (Gaffney, Meylan, and Wyss (1991).
2. The description of characters 40–115 raises a fresh

set of problems, the implications of which are
discussed in table 1.

Collinearity 
It is easy to see, even from a cursory examination 

of the data in Shaffer, Meylan, and McKnight (1997) 
that many characters or variables (the columns of the 
data matrix X) are collinear—that is, they are highly 
correlated. In fact, in many cases they are actually 
entirely identical. As a toy example of this problem, 
consider the example:

It is immediately evident that characters {2, 5} 
and {4, 6} contain exactly the same information with 
respect to the 3 taxa. These two sets of variables are 
perfectly collinear. What does this mean? Obviously, 
(for instance) it means that whenever character 4 is 
present in a taxon, so is character 6, and whenever 
character 4 is absent, so is character 6. So character 
6 adds no more information about the taxon than 
character 4 (and vice-versa). But what are the 
statistical implications? We might regard characters 
4 and 6 as representing instances of some “higher” 
concept that has these specific properties of presence/
absence in a generic sense, one  that subsumes these 
particular cases. (This idea is behind such methods 
as factor analysis, principal components and MDS, 

where the aim is to reduce the dimensionality of the 
space in which the taxa sit.) But if we retain both 
of them (and likewise characters 2 and 5), we are 
implicitly giving this concept a higher weight (2 in 
this case) than those concepts represented by a single 
instance, such as characters 1 and 3. And this may 
alter the distance matrix in interesting ways; for 
example, using simple matching, d(x, z) = 2/6. Or 
is it? Perhaps, if we only count one of {2, 5} and {4, 
6}, it should really be 1⁄4. And should d(y, z) = 1⁄6, 
or 1/4? In one case, the distance decreases, in the 
other it increases. How we regard collinearity has 
implications—and ignoring it does too. 

In the case of the turtles, a pairwise comparison 
of all 115 columns was carried out. Some of these 
columns had missing values, which raises another 
problem. If two columns are identical everywhere the 
values are known, should they be declared identical, 
even if some characters are unknown? Arguably, it 
depends on how many missing values there are; most 
common techniques used to estimate a single missing 
value would probably impute an identical value 
to that of its twin column anyway. It is therefore 
reasonable to treat them as identical if the proportion 
of missing values is small. (NB The missing value 
proportion is the complement of what Wood (2005) 
calls the “relevance” criterion.) If all columns are 
included in the comparison, the set of 115 characters 
reduces to just 51 distinct characters in the sense of 
supplying unique information. 

More generally, we may not have exact identity 
of variables, but some sets may still be highly 
correlated. Again, the information contained in such 
sets of variables is implicitly less than that contained 
in the same number of non-correlated variables, so 
leaving them in the dataset has the effect of inflating 
the implied weight of each concept represented by a 
set of multi-collinear variables. This raises further 
questions as to the meaning of a “holistic” set of 
characters. If we know—or at least suspect—that 
some characters are effectively describing the same 
thing, should we proceed as if we were ignorant of 
the fact? There is also a practical issue for clustering 
techniques that make use of matrix manipulations 
in order to cluster a data matrix: such a matrix will 
not be of full rank, and this may cause numerical 
stability problems. 

Inconsistent labelling 
Most standard implementations of cluster analysis 

assume the convention that 1 means the presence 
and 0 the absence of a character. On investigating the 
turtles dataset it appears that this is emphatically not 
the case. In some cases 0 is assigned to presence and 1 
to absence, in what appears to be an almost arbitrary 
fashion. Closer inspection, however, shows that 

Taxon
Character

1 2 3 4 5 6
x 1 1 0 0 1 0

y 0 1 0 1 1 1

z 1 1 0 1 1 1
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there is a rationale—an evolutionary one! Whether 
0 means presence or absence depends on the status 
of the character as either “primitive” or “derived.” 
Thus the splenial bone (character 40) is present in 
the fossil turtle species Proganochelys, but absent in 
most modern turtles; its absence being considered 
“derived,” presence is coded as 0. On the other hand, 
cervical vertebrae 5 and 8 (character 48) are biconvex 
only in modern turtles, so presence is considered 
derived, and is therefore coded as 1. Moreover, this 
is in some cases extended further where degrees of 
derivation are believed to be evident—for example, a 
primitive character is coded as 0, a fully derived one 
as 2, and an intermediate one as 1. Although none of 
this is matters in the case of simple matching, it will 
clearly affect more sophisticated distance measures. 

This also raises the question as to how much 
credence we should place on values that are based 
squarely on an evolutionary account in trying to elicit 
information about created kinds. Evolutionary biases 
are being injected into the very coding of the data. Of 
course, the original object of the coding was to subject 
the data to a cladistic analysis in order to build a 
phylogeny, but it may be that very phylogeny that, as 
creationists, we wish to question. At least, we should 
carefully scrutinize the data before blindly applying 
a particular clustering method, and if necessary 
consider modifying the coding. 

Inappropriate scaling 
Another example of possible coding bias is seen in 

character 43 (diploid number of chromosomes), for 
which there are nine possible values {28, 34, 36, 50, 
52, 54, 56, 66, 68}, coded as 1–9. For distance-based 
clustering, this raises significant questions. If simple 
matching is used, the implication is that the distance 
between (say) 28 and 68 is the same as between 28 
and 34 (and, of course, the same as presence/absence 
of any dichotomous character). If a more sophisticated 
metric is used, it may try to take account of the 
ordinal nature of the variables. But now we have 
a problem of incommensurability—is the relative 
difference between (say) 28 and 34 [which would be 
(|2 − 1|)/(|9 − 1|) = 1 ⁄ 8] less important (by a factor of 
8) than the difference between presence and absence
of some other dichotomous character? Answering
such questions may not be easy, but they need to be
considered when using statistical software; bespoke
distance functions may have to be designed.

Unnecessary discretization 
A similar problem is seen in a particularly 

acute way in another paper (O’Micks 2016), which 
attempts a baraminological analysis of the recent 
hominim discovery know as Homo naledi. All the 

characters in the underlying study (see Berger et al. 
2015) are actually measurements, i.e., continuous 
variables. Yet in order to be able to apply the BDIST 
program, each variable has been discretized using 
the equation:2

where xi
* (resp. xi*) = maxjxij, (resp. minjxij), and [x] is 

the “floor” function, i.e., the largest integer not greater 
than x. With the greatest respect, this is crazy! All 
these data can be viewed as being generated from a 
set of probability density functions with their own 
characteristics (mean, standard deviation, skewness, 
etc.). Indeed, perhaps some characters have the 
same distribution—which might indicate they are 
markers for the same baramin. Why would we want 
to throw away the possibility of estimating such 
useful information by imposing a crude homogeneous 
discretization—one that doesn’t even acknowledge 
the nature of the centers of, and variations within, the 
continuous character values? Moreover, as discussed 
in Reeves 2021, 261, this may impute a “distance” 
between two characters that are almost identical but 
on opposite sides of these arbitrary borders. And why 
just four discrete characters? These data are crying 
out for a continuous clustering model—something 
like a “k-means” algorithm, perhaps. 

Character selection 
The issue of character selection is one that has 

occupied proponents of SB—in fact, it is the main 
thrust of the bootstrapping approach taken in BDIST. 
Wood (see for example, Wood and Murray 2003, 115–
130) contends that baraminology should be based on
the holistic value of a large set of attributes rather
than a handful. This “refined baraminic concept” is
just an assumption, however, and it does not appear
to have been tested—Wood wants to address the
question ‘‘have we got enough?’’ rather than ‘‘do
we really need them all?’’. Yet it is an interesting
question whether all the independent variables used
in the clustering procedure are actually relevant.
For the turtles dataset it is suggestive, just from the
fact that the first two MDS components typically
account for a fairly large fraction of the variation,
that many variables may contribute very little. A
deeper investigation (see Collinearity) reveals the
existence of a large degree of collinearity. But such
an in-depth examination is time-consuming, and
may not always be possible (e.g., if we only had a
dissimilarity matrix). A possible alternative to MDS
would be to estimate discriminant functions to assign
points to one or other of the clusters, iteratively
eliminating characters whose coefficients are near

ij i*
ij *

i i*

x x
x

x x
3.999(1 − ′ = +  − 

2 The variables of the equation in O’Micks (2016) are not very clearly defined; this is my interpretation of it.
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zero. However, MDS loses information, the meaning 
of its components is often hard to interpret, and 
methods such as discriminant analysis are fragile in 
the presence of missing values. One way to answer 
this question in a more robust way might be to use a 
classification tree (Breiman et al. 1984), which also 
copes better with missing values.3 This may be a 
fruitful line of enquiry for further research. 

Conclusions 
Specifically in regard to the analysis of the turtles 

dataset, the questions raised above with respect to the 
nature of the data may make the conclusions reported 
above (and, a fortiori, those found in Wood 2005) 
debatable. A much deeper analysis is needed of the 
effect of the assumptions (embedded in the original 
papers) on the distance matrix. I suspect the examples 
discussed above could be multiplied many times. If 
we want to know whether statistical baraminology 
is giving reliable answers, the first step is to ask the 
right questions of the data. Having answered these 
questions it is then necessary to apply well-founded 
statistical methods, of which clustering techniques 
are an example, and a much safer one than BDC. I 
take it that the goal is to build a scientific research 
field founded on an acknowledgement of biblical 
data, a goal which I sincerely applaud. But that 
doesn’t obviate the need to treat the scientific data 
carefully and thoughtfully, to use statistical methods 
that are securely based, and to carry out appropriate 
robustness and sensitivity tests on the results. As 
currently practised, statistical baraminology lacks 
these elements, at least in some degree, and until it 
acquires them it is not a plausible research program. 

Postscript 
As the final version of this paper was being 

prepared, my attention was drawn to a recent 
paper (Doran et al. 2018). This uses another multi-
variate technique—principal components analysis 
(PCA), which produces a set of rotated axes to help 
visualize high-dimensional spaces from a covariance 
or correlation matrix. Is this likely to be a fruitful 
alternative to BDC? Probably not. PCA is generally 
used with quantitative (i.e., interval or ratio-scale) 
data, and its use for binary, and especially nominal 
or ordinal data, is anathema to many statisticians; it 
should at least be approached with caution. The use 
of polychoric correlation4  rather than the standard 
Pearson correlation coefficient has been suggested as 
one way of mitigating these problems. Standard PCA 
methods usually subtract centroids from the actual 

variables, about which the axes are rotated. As 
observed in Introduction, centroids are inappropriate 
for discrete data. Alternative centers (e.g., medoids) 
have been advocated, but these need to take into 
account the type of the variables explicitly. Indeed, 
for non-quantitative data, many statisticians advise 
that a technique called multiple correspondence 
analysis (MCA) should always be preferred to PCA. 
Once again, all such questions point up the need to 
ask the right questions of the data. 
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